
International Journal of Automation and Computing 13(6), December 2016, 552-564

DOI: 10.1007/s11633-016-1028-9

xBreeze/ADL: A Language for Software Architecture

Specification and Analysis

Chen Li1 Hong-Ji Yang1 Mei-Yu Shi2 Wei Zhu2

1School of Humanities and Cultural Industries, Bath Spa University, UK

2Tourism Institute, Beijing Union University, Beijing 100101, China

Abstract: Architecture description languages play an important role in modelling software architectures. However, many architecture

description languages (ADLs) are either unable to deal with the verification and dynamic changes directly or too formal to be understood

and manipulated. This paper presents xBreeze/ADL, a novel extensible markup language (XML)-based verification and evolution

supported architecture description language, which is specifically designed for modelling the software architecture of large, complex

systems. Five principle design goals are 1) to separate template from instance to define a loose coupling structure, 2) to present virtual

and concrete link to identify service execution flow, 3) to clearly represent component behaviour to specify architecture semantics, 4) to

introduce multi-dimension restrictions to define the architecture constraints, and 5) to use the graph transformation theory to implement

the architecture configuration management (i.e., reconfiguration and verification). Various advanced features of xBreeze/ADL are

illustrated by using an example on online movie ticket booking system.

Keywords: Software architecture, architecture description language (ADL), xBreeze/ADL, breeze graph grammar, Breeze/ADL.

1 Introduction

With the development of the Internet technology, soft-

ware development and operation are facing a changing,

complex and uncontrollable environment. In order to con-

trol the complexity of software systems, people start to

transfer their focus to three aspects: software structure,

evolvability and quality. Thus, in order to support the soft-

ware development and quality assurance in a software life

cycle, it is an urgent need to study technologies of software

specification and analysis.

Software architecture, as the abstraction of the soft-

ware system, plays an important role in manipulating and

analysing a system at a high level, and it represents the

complexity in the global view of software systems. Gener-

ally, there are three basic elements of the software archi-

tectures, i.e., architecture structure (e.g., architecture in-

stance), style (e.g., templates and constraints), and config-

uration management (e.g., architecture reconfiguration).

Various techniques and tools have been proposed to spec-

ify and model the software architecture. One of the most

popular ways to describe the software architecture is archi-

tecture description languages (ADLs). By using ADLs, the

system enjoys a high efficiency of development and its com-

plexity can be controlled. However, most ADLs are either

only considering static aspects of the architecture or un-

able to deal with the change directly. Besides, the service

Research Article
Manuscript received December 4, 2015; accepted April 21, 2016
This work was supported by National Natural Science Foundation

of China (No. 71473018).
Recommended by Associate Editor Matjaz Gams
c© Institute of Automation, Chinese Academy of Sciences and

Springer-Verlag Berlin Heidelberg 2016

execution flows within a component is not clearly discussed.

Moreover, few of them have strong flexibility and extensibil-

ity, and can provide multi-dimension constraints to restrict

the interaction behaviour, or support architecture verifica-

tion and transformation explicitly.

To remedy this, we have developed xBreeze/ADL, an

eXtensible markup language (XML)-based, verification

and evolution supported architecture description language

specifically designed for modelling software architecture of

large, complex systems. These systems are composted of

various components, and require high evolvability to adapt

to the change of system or environment. xBreeze/ADL is

first developed for specifying and analysing the software ar-

chitecture of those systems. Based on our former work[1, 2],

this new ADL-xBreeze/ADL is 1) to map a software archi-

tecture into a graph and the architecture structure is rep-

resented in terms of the nodes and edges, 2) to use produc-

tion, leveraging graph transformation idea, which defines

the pre-condition and post-condition of an operation to sup-

port the architecture evolution and constraint verification,

3) to specify the component semantic by defining the ac-

tion of the port for capturing the component′s behaviour,

4) to provide restrictions for constructing behaviour con-

straints from four aspects (i.e., action dependence, time de-

pendence, state dependence and execution dependence), 5)

to define three general reconfiguration operations (i.e., ad-

dition, removal and replacement) for augmenting evolution

support at the level of components/connectors, and 6) to

assign the running pattern (i.e., sequence, parallel and iter-

ation) to the above reconfiguration operations for describing

the composite operations.

In this paper, we first list related work (Section 2). We



C. Li et al. / xBreeze/ADL: A Language for Software Architecture Specification and Analysis 553

Fig. 1 Feature comparison of related architecture description techniques

survey several popular ADLs which are related to the xBree-

ze/ADL and summarize the common features of them.

The overview of xBreeze/ADL is described in Section 3.

The key features of xBreeze/ADL include the Architecture

Template (Section 4.1), Semantic (Section 4.2), Link (Sec-

tion 4.3), Style (Section 4.4), Constraints (Section 4.5), In-

stance (Section 4.6), Rule (Section 5.1) and Configuration

(Section 5.2). An online movie ticket booking system has

been chosen in order to show flexibility and extensibility of

xBreeze/ADL to practical problems in Section 6. Section 7

concludes the paper.

2 Related work

As a blueprint of the software systems, software archi-

tecture plays an important role in depicting the skeleton

of the whole system, especially in large and complex sys-

tems, in a global view. A series of design decisions can

be completely illustrated through the software architecture.

Comparing with lines-of-code, coarser-grained architecture

elements and their interactions illustrate a high level ab-

straction of the system. It provides a better manner of

understanding and manipulating a system. To support the

software architecture development, many ADLs have been

proposed.

One of the most popular techniques for de-

scribing a software architecture is the ADLs, like

Wright[3], Dynamic Wright[4], Aesop[5], ArTek[6],

C2[7], MetaH[8], LILEANNA[9], SADL[10], Weaves[11],

Darwin[12], Rapide[13], Unicon[14], ACME[15], xADL 2.0[16],

ABC/ADL[17], etc. Those ADLs depict the abstract infor-

mation of the software systems at a high level, e.g., Style,

behaviour and Configuration.

Wright is proposed to support a static software archi-

tecture, and its formal syntax basis is communicating se-

quential processes (CSP)[18]. It is often used in correctness

verification such as deadlock analysis and consistency ver-

ification, but it cannot support a dynamic software archi-

tecture. Darwin is an ADL which focuses on three atomic

services-provide service, request service and binding service,

but Darwin cannot specify connectors explicitly and inde-

pendently. Rapide is developed to describe the computation

behaviours and interaction behaviours, using the partially

ordered event sets, but it cannot fully support the expres-

sion of the interaction models of components. Unicon is

proposed by Shaw et al., which uses Role to stand for par-

ticipants of an interaction and player to stand for interfaces

of components, but it′s insufficient in the specification of

the software architecture style. ACME is proposed by Gar-

lan et al., whose purpose is to provide a simple and general

ADL. Technically, ACME is preferred to be an architec-

ture transformation language instead of ADL. It provides a

mechanism for the transformation between different ADLs,

and also supports an open semantic framework for labeling

the attributes of the architecture structure. xADL 2.0, like

our xBreeze/ADL, is an XML-based ADL. Based on xArch,

which provides a core specification for basic architecture el-

ements, xADL 2.0 supports run-time and design time mod-

elling and uses the XML schema to extend the core. Unfor-

tunately, xADL 2.0 cannot fully implement the architecture

behaviour and constraints definition, and the style verifica-

tion only can be done on C2 style architecture. ABC/ADL

is also an XML-based ADL. ABC/ADL combines the top-

down and down-top views together to model the software

architecture. It uses two-layer mapping mechanisms, i.e., 1)

architecture modelling results to UML and 2) UML to code

framework, to deliver the basic code framework of an archi-

tecture to the developer. However, it also fails to perform

the architecture style verification, reconfiguration and con-

straints definition. To remedy this, people try to use some

graph grammars, like attributed graph grammar (AGG)[19],

for software design and development. These formal graphi-

cal notations not only help modelling and representing the

software system but also provide a vivid way to achieve the

system analysis and evolution. However, they do not sup-

port architecture design directly, e.g., the interface or con-

nector cannot be found in the definition of graph which is

one of the most important characteristic of a software archi-

tecture. Breeze/ADL[1], one of our former work, is an archi-

tecture language which adopts XML as the meta-language

and has the ability of describing the software architecture.

Breeze/ADL specifies the software architecture in an XML

format and captures the change during both initial devel-

opment and subsequent evolution by performing produc-

tion according to the Breeze graph grammar[2] productions.

However, Breeze/ADL still needs to be improved regarding

the behaviour definition, multi-dimension restrictions spec-

ification, hierarchical composition, reconfiguration refine-

ment and running pattern definition aspects, and that is

the motivation behind developing xBreeze/ADL. The aims



554 International Journal of Automation and Computing 13(6), December 2016

of xBreeze/ADL are to capture the component/connector′s
semantic, verify the style/constraints and achieve evolution

by using architecture as a framework for integrating series

of components, connectors and connections into software

systems.

Most of the above proposed ADLs only focus on the static

aspect of architecture, e.g., they are unable to deal with the

change directly, especially for dynamic evolution of soft-

ware systems. Also, these ADLs cannot fully support the

architecture style verification, behaviour specification and

constraints definition. Our paper builds upon the results

of the above efforts, e.g., borrowing some ideas of Rapide

to enhance the semantic and constraint expressing, lever-

aging graph transformation to implement the reconfigura-

tion. Fig.1 shows a feature checklist for above the archi-

tecture description techniques and our xBreeze/ADL. The

“–”, “+” and “++” represents the feature is not supported,

supported and well supported, respectively.

3 Overview of xBreeze/ADL

An xBreeze/ADL document is an XML document that

follows a set of xBreeze/ADL schemas. These schemas are

classified into two groups according to their purposes. One

set of schemas establishes the architecture modelling and

the other supports for the architecture configuration man-

agement. Modelling features provided by schemas are de-

scribed in Fig. 2.

3.1 Architecture modelling

xBreeze/ADL specifies the software architecture in terms

of architecture templates, styles, constraints and instances.

Seven schemas are involved into architecture modelling:

1) the Template schema for describing the primary ele-

ments, i.e., components, connectors and ports, 2) the Link

schema for specifying the connection among the compo-

nents/connectors, 3) the Semantic schema for modelling the

behaviour of components, 4) the Style schema for provid-

ing the architecture style with defined templates and style

constraints, 5) the Constraint, 6) Rule schemas for writing

the abstract restriction (e.g., behaviours constraints, style

constraints), and 7) the Instance schema for describing the

architecture instance according to the style and constraint.

xBreeze/ADL maintains a separation between the tem-

plate and instance of an architecture model. In most cases,

a software system may contain different subsystems which

might follow various styles and constraints. Therefore, sup-

porting independent template definition will contribute to

implement different sub-architectures with different styles.

In general, most ADLs precisely define the external inter-

action connections since the component is usually consid-

ered as a black-box. The benefit of doing this is to sim-

plify the architecture design process by hiding the inter-

nal communication of the components. Though this helps

to identify the service execution flows among the compo-

nents, it is unable to trace the invocation paths from the

provider interfaces to the requestor interfaces within the

component. xBreeze/ADL not only concerns external inter-

actions among components but also considers the internal

communications within a component, with the help of Link

schema. xBreeze/ADL supports the architecture seman-

tic specification by modelling the component′s behaviour

which is captured through the interactions among the in-

terfaces.

xBreeze/ADL, using predefined templates, maintains

architecture style information. It also uses the multi-

dimension constraint and Production which is defined in

rule schema (see Section 5.1) to specify the behaviour con-

straint and style constraints respectively. Generally, an ar-

chitecture instance can be generated if all of its instances

(including component instances and connector instances)

subject to the corresponding templates and constraints.

Fig. 2 xBreeze/ADL schemas and features



C. Li et al. / xBreeze/ADL: A Language for Software Architecture Specification and Analysis 555

3.2 Architecture configuration

One of the essential modelling features of software ar-

chitecture is dynamic evolution. In order to support the

architecture evolution, xBreeze/ADL uses two schemas,

Rule and configuration schemas, to implement the archi-

tecture reconfiguration and define their running patterns.

xBreeze/ADL borrows the idea of graph rewriting rules of

Breeze graph grammar to define the architecture transfor-

mation with Rule schema. Recall that the style constraints

verification is also specified with the help of Rule schema.

Unlike other ADLs, xBreeze/ADL explicitly defines three

reconfiguration operations, i.e., Addition, Removal and Re-

placement, to support the architecture evolution with con-

figuration schema. Moreover, xBreeze/ADL also allows ar-

chitects to arrange the running pattern of the reconfigu-

ration operations. To be specific, those operations can be

executed in a pattern (Sequence, Parallel or Iteration).

4 Architecture modelling schemas

In this section, we give a brief overview of each of the

schemas for modelling the software architecture.

4.1 Template schema

xBreeze/ADL makes explicit distinctions between the ar-

chitecture template and instance. Like the Class in object-

oriented design (OOD), a template provides a framework or

pattern for the architecture elements. The template schema

specifies the node template and super node (i.e., composite

nodes or nested nodes) template for a software architecture.

Using nodes and edges to build an architecture is based on

the idea of Breeze graph grammar and it provides a vivid

way to illustrate a software architecture.

xBreeze/ADL uses the node template to support the def-

initions of both component templates and connector tem-

plates. Each node template provides the basic informa-

tion for its instance node(s). An instance node satisfies a

node template if it defines all items declared in the tem-

plate. In general, each instance node is generated from a

node template, and instances may be derived from the same

template. Some key features need to be specified in a com-

ponent or connector template, i.e., Type, Class and Port

template. Fig. 3 shows the essential meta elements which

the template schema need to specify.

The Type attribute helps define the type of the node

template which could be a component or a connector. Com-

ponent, as a functional part of a software system, plays a

key role in providing services for users. The functions of

a component are usually defined in Class(es) which help(s)

people to identify and understand the components.

Thus, xBreeze/ADL requires the node template to de-

clare its Class attribute explicitly when it is generated.

Given the Class for the template, all instances of this tem-

plate will have the same Class which means they all share

common functions and follow the same patterns. More-

over, separating the template from the instance makes the

instance not only inherit the functions of its template but

also be capable of being extended to support new functions.

This OOD feature makes the xBreeze/ADL enjoy a high ex-

tensibility and flexibility.

Fig. 3 Template schema: defining template for super node and

node.

Port, as one of key elements of a component or a con-

nector, is responsible for interactions among components.

The main functions of a component or a connector are de-

fined in its ports. A port template contains three elements:

method access type, method name, semantic (Section 4.2)

and constraint (Section 4.5). The SPort attribute indicates

that the port is a regular port (if its value is set to false) or

a super port (if its value is set to true). xBreeze/ADL uses

Direction attribute to identify a requestor port (i.e., direc-

tion is “In”) or a provider port (i.e., direction is “Out”).

A component uses its requestor ports to ask other com-

ponents for their services. Thus, the requestor ports are

usually declared as private or protected, i.e., these ports

are only visible within the component or the subcompo-

nent. On the contrary, the provider ports are those defined

in public, which means other components may invoke them.

One of essential features of xBreeze/ADL is supporting

the hierarchical composition by capitalizing the super node.

Each super node, representing a composite node or a sub-

system, contains nodes and edges, and might have its own

style. The SNodeTemplate encapsulates the node templates

which will be used to construct a composite node template

to meet the system requirements. The super node uses some

ports from its sub nodes to interact with other node, and

the SPort attribute helps to declare such super port tem-

plates for the super node template.

The meta elements of the template schema presented here

only provide essential features for building the particular

type of instances.

4.2 Semantic schema

xBreeze/ADL explicitly specifies the component′s se-

mantics in terms of behaviours of the port. As mentioned

above, the port template specifies the semantics of the com-

ponent by semantic schema which defines essential meta



556 International Journal of Automation and Computing 13(6), December 2016

elements of the behaviour.

To model the dynamic component behaviour,

xBreeze/ADL abstracts the interaction information among

the components, and separates service requestor behaviours

and service provider behaviours according to the method

which is defined in the port template. The semantic schema

uses a requestor element to encapsulate two actions: Caller

and Return for a requestor port template. The Caller action

needs to specify the method parameters (MethodParame-

ter) which will be sent to the port template of the service

provider. The requestor port template also uses its Return

action to describe the type of result (MethodReturn) which

is expected by the service provider. It is similar to the

provider port template which capitalizes the Provider ele-

ment to define two actions: Callee and Result. The Callee

action depicts the requirements of the type of the method

parameters which are expected by the service requestor.

The Result action tells the requestor port what type of

the result the provider will send. Fig. 4 shows the essential

meta elements which the semantic schema specifies.

Fig. 4 Semantic schema: defining semantics in terms of be-

haviours

4.3 Link schema

Unlike other ADLs, xBreeze/ADL explicitly defines the

link (i.e., edge element) for two purposes.

The first is refining the connections. Edge defines two ele-

ments, i.e., Source and Target, for a connection (see Fig. 5).

The Source indicates the component which starts an invo-

cation, and the invoked component is the Target. The edge

not only helps to bind ports (e.g., connecting the service

requestor port to the service provider port) between the

components but also supports the behaviour binding (e.g.,

connecting the action of service requestor port to the action

of a service provider port). xBreeze/ADL brings more clear

communication channels to the software architecture, and

the behaviours among the components are more easy to be

understood.

The other is identifying the implicit service execution

flows within a component. Most ADLs do not support the

implicit invocation path within the component. If a compo-

nent has several requestor and provider ports, those ADLs

might help to understand what functions are provided or re-

quested by those ports. That means it only shows external

interaction behaviours of a component, but internal commu-

nications among these ports within the component cannot

be learned even at an abstract level. Thus, xBreeze/ADL

uses the Virtuality attribute of the edge to identify the links.

To be specific, xBreeze/ADL provides two types of edge,

virtual edge and concrete edge. In general, the edge among

the components is called a concrete edge, i.e., the value of

its Virtuality is set to false, and the interaction among ports

within a component refers to virtual edge in which Virtu-

ality is true. Unlike edges among components, the virtual

edges only provide an abstract information among ports.

That means they only need to bind the ports together to

help developers to understand the service execution flows

within a component.

Fig. 5 Link schema: defining a connection between service

provider and requestor

4.4 Style

Style is a skeleton of the software architecture and it

guides the developer how to build an architecture instance.

As we mentioned before, to describe an architecture style,

we need to introduce the related component and connector

templates, semantics and links, and bind them to certain

style constraints (Section 4.5).

Since xBreeze/ADL supports the hierarchical composi-

tion, a composition node (i.e., super node) might have its

own style. Thus, developers may define different styles

for the software architecture. Each style only contains

necessary component and connector templates and uses

edges to bind them together to form an architecture refer-

ence model[20]. Fig. 6 shows the meta elements of the style

schema.



C. Li et al. / xBreeze/ADL: A Language for Software Architecture Specification and Analysis 557

4.5 Constraints

xBreeze/ADL supports specifications of architecture con-

straints in three aspects: behaviour constraints, style con-

straints and user-defined constraints.

Fig. 6 Style schema: defining an architecture skeleton and con-

straint

To precisely define the behaviour constraints,

xBreeze/ADL concerns four dimension restrictions of a

behaviour, i.e., action dependence, time dependence, state

dependence and execution dependence. Action dependence

helps to identify which behaviour should happen before

others. Given the action dependence, the interaction re-

strictions are easy to be understood, and this also helps to

identify the service execution flows among components. For

example, a response action always happens after a request

action. Action dependence defines Precondition element

and Postcondition element for Pre-action and Post-action

respectively. To support the dynamic change of the soft-

ware architecture, xBreeze/ADL introduces the time factor

into component behaviours and binds the actions with time

restrictions. A component may show different behaviours

time to time according to the time dependence. There are

three time periods that we concern in time dependence,

i.e., Between, Before and After. The Between element

capitalizes the Start and End attributes to specify a time

interval for an action, which means the action is only valid

during this time period. The Before and After elements

depict an action that should start before and after a spe-

cific time respectively. During the system running time,

known or unknown factors (e.g., internal bug, unstable en-

vironment) might lead components to a failure state. Such

state should be reflected to the architecture level for further

analysis and design. Therefore, xBreeze/ADL focuses on

four types of states: Active (means working), Idle (waiting

for invoking), Suspend (cannot be visited temporarily) and

Failure (stop working due to some errors). Binding state

with behaviour helps to obtain more running details of the

component and also to restrict the component′s behaviour.

Actions within (among) the component(s) might execute

concurrently. xBreeze/ADL borrows some ideas of cur-

rent systems to support a Parallel and Sequence execution

pattern for component behaviours. Fig. 7 shows the meta

elements of the Constraints schema.

Style constraints define basic restrictions among the tem-

plates. Unlike behaviour constraints, it focuses on the way

to connect templates instead of the specific behaviour of the

component. In general, each style has its own constraints.

For example, Client/Server style requires the communica-

tions that only happen between the client component and

server component. xBreeze/ADL also supports user-defined

constraints at the architecture level. Designers may set the

restrictions for the architecture structure (without violat-

ing the style constraints), behaviour or attribute. Benefit-

ing from Breeze Graph Grammar, xBreeze/ADL uses the

Rule to specify the style constraint and user-defined con-

straint. More details about how to use Rule to define those

constraints will be explained in Section 5.1.

Fig. 7 Constraint schema: defining behaviour, style and user

constraint

4.6 Instance schema

Based on the architecture templates, styles and con-

straints, an architecture instance can be generated. Each

instance has its own template which provides a basic

structure and semantic information. The composition

of architecture instances needs to follow the style con-

straints. Though the instances are created by templates,

xBreeze/ADL also supports incremental modification, i.e.,

developers may add some other attributes, actions, ports

and connections only if these modifications are not violating

the original behaviours and constraints which are inherited

from the templates.



558 International Journal of Automation and Computing 13(6), December 2016

xBreeze/ADL describes some key features of an archi-

tecture instance, i.e., Node Instance, Super Node Instance,

Edge, Style. Fig. 8 shows the corresponding meta elements

of the Instance schema. Unlike the template, an archi-

tecture instance needs to declare its style when it is gen-

erated. Since an architecture instance may have several

sub-systems, the StyleID attribute helps to identify which

style the sub instance refers to. Each node instance and

super node instance have to connect to their templates

through NodeTemplateID attribute and SNodeTemplateID

attribute respectively. If the developer adds a new port to

the node instance without violating constraints, the seman-

tic and constraints of the new port need to be defined. Oth-

erwise, the PortTemplateID attribute of the instance port

needs to refer to its port template. The instances generated

from the templates do not need to specify their semantics

or constraints again. The Edge element helps to build the

interaction among the components.

Fig. 8 Instance schema: defining an architecture instance ac-

cording to templates

5 Architecture configuration manage-

ment schemas

Software systems have always been in a changing, com-

plex and uncontrollable environment which brings new chal-

lenges to the software architecture configuration manage-

ment. Most of proposed ADLs are either used to capture

the static structure information of the software system at

architecture level, or using formal notations to represent the

architecture evolution in a complex way.

In order to specify possible changes during the sys-

tem running time and verify the architecture constraints,

xBreeze/ADL uses the idea of graph transformation and

defines Production element to implement style constraints

and user-defined constraints definition and verification. It

also specifies essential reconfiguration operations for the ar-

chitecture evolution. Besides, xBreeze/ADL not only sup-

ports basic reconfiguration operations, including Addition,

Removal and Replacement operations, but also is able to

specify the operation pattern of those operations, e.g., se-

quence, parallel and iteration.

5.1 Rule schema

Before continuing, it is necessary to have a short discus-

sion on the definition of production.

In graph grammar, a production is also called a graph

rewriting rule. Generally, a production has two graphs, i.e.,

left-hand side (LHS) graph (pre-condition) and right-hand

side (RHS) graph (post-condition). The graph transforma-

tion is implemented by using production. In Breeze graph

grammar, productions not only are over the same alphabets

of node and edge labels, i.e., LN and LE , but also rely on

their ports and nodes attributes, i.e., ACN and AN . A pro-

duction (graph rewriting rule) can be written as P = (L, R),

i.e., a pair of graphs (i.e., LHS and RHS graph) over the

same alphabets of node and edge labels.

In order to achieve the software architecture reconfigu-

ration (graph transformation), we need to find a redex, a

matching sub-graph in the host graph, and use the RHS

to replace the LHS in this redex. This match processing

is also looked as a mapping or morphism between the LHS

and RHS graph. More details can be found in [1, 2].

xBreeze/ADL capitalizes the above graph transformation

and defines the Production element in Rule schema. It uses

the LHS and RHS elements to represent the corresponding

left-hand side graph and right-hand side graph of a pro-

duction in Breeze graph grammar, respectively. The LHS

defines the precondition of a reconfiguration operation in-

cluding the related structure and semantic. The RHS de-

scribes the postcondition (i.e., new structure and (or) se-

mantic) after the operation executions. The constraints,

including styles and user-defined constraints, can be also

defined and verified through the Production. Unlike the re-

configuration operations, the LHS of a constraint represents

the architecture structure and (or) semantic which violate

constraints, and the RHS refers to the correct situation. For

architecture constraints verification, if the LHS of the con-

straints is found in the architecture instance, then we can

infer that the architecture does not satisfy the constraints.

The user-defined constraint can also be performed through

this way. The next section will explain how to use the Rule

to implement the reconfiguration operations. Fig. 9 is the

corresponding meta elements of the Rule schema.

5.2 Configuration schema

In order to capture the change during both the initial

development and subsequent evolution, xBreeze/ADL uses

the Configuration schema to define three reconfiguration

operations (i.e., addition, removal and replacement) for the

architecture evolution, and also considers composite opera-

tions (i.e., sequence, parallel and iteration).

Configuration schema declares two elements: Reconfigu-

ration and RunningPattern. Reconfiguration defines three

subelements: Addition, Removal and Replacement. Each

subelement owns a Rule element which has a set of corre-

sponding productions. RunningPattern arranges the above

productions in the way of sequence, parallel or iteration ac-



C. Li et al. / xBreeze/ADL: A Language for Software Architecture Specification and Analysis 559

cording to the system requirements. Fig. 10 shows the meta

elements of the configuration schema.

Fig. 9 Rule schema: defining rules for style constraint and re-

configuration operation

6 Case study

In this section, we use an online movie ticket booking

system (OMTBS) to explain how to model software archi-

tecture with xBreeze/ADL. The graphic notation of online

booking system is described in Fig. 11.

The OMTBS helps people to book the movie ticket. Cus-

tomers may use three types of Client, i.e., Cell phone, Lap-

top and PAD, to book the movie tickets through a Booking

agent. All the booking information collected by Booking

agent are registered at Booking server. The Booking agent

will receive the results from the Booking server as long as

the process is completed.

Fig. 10 Configuration schema: defining the reconfiguration and

running pattern

6.1 Architecture modelling for OMTBS

In order to model the software architecture of OMTBS,

we need to specify the architecture template, style, con-

straint and instance first. Due to the page limit, we only

provide essential parts of the modelling results.

Fig. 11 Online movie ticket booking system



560 International Journal of Automation and Computing 13(6), December 2016

6.1.1 Template for OMTBS

We take the Booking server and Booking agent as exam-

ples to show how to define the template for OMTBS.

Fig. 12 presents a node template for the Booking server,

and it specifies the Type and Class of Booking server as

Component and BookingServer respectively.

Fig. 12 Templates for booking server and booking agent

One of the port templates−PTPSMS of the Booking

server is defined as a provider port (i.e., direction is out)

to answer the booking requests from Booking client. As

a provider port, its method access type is required to be

Public for other component invocations. Its method name

is defined as the BookingProcess. Since it is a regular port

template, the SPort attribute is set to false. The Book-

ing agent transfers the booking requests from Cell phone,

PAD and Laptop to the Booking server in Fig. 11. As a

super node−BookingClient is defined, which contains the

Booking agent, Cell phone, PAD and Laptop templates,

and shown as a client in Fig. 11. The super node capitalizes

the port (PTLSMS) of Booking agent to communicate with

the Booking server, and the SPort attribute of PTLSMS is

set to true.

6.1.2 Semantic for OMTBS

The semantic of the Booking Server is depicted by its

behaviour, i.e., answering the booking requests. Fig. 13

presents the corresponding semantic which separates the

behaviour into two actions – CalleeBStSMS and ResultB-

StSMS. The service provider port template (PTPSMS) of

Booking server uses its Provider element to model the be-

haviour of booking ticket through SMS. It expects the

String and Date type of the parameters from the requestor

and then returns a String type result.

6.1.3 Links for OMTBS

The link is represented by the edge in xBreeze/ADL. It

stands for the connection for the component communica-

tion. In Fig. 14, the first Edge (ConPSMS) defines the link

between the Booking agent (NTBS) and Connector (Con04,

i.e., connector template). Since the request is sent from the

Con04 to the NTBS, the ConPSMS sets the Con04 as a

source node and connects its port (PTConLSMS) to the

target port (CalleeBStSMS) of the NTBS. It also binds

their actions together to refine the connection among the

components.

Fig. 13 Semantic for booking server

One of the advantages of xBreeze/ADL is providing vir-

tual edge and concrete edge to define the connection among

components and within a component respectively. Thus,

the first and second edges of Fig. 14 are between the com-

ponent and connector, they are concrete edges and their

Virtuality are both false. The third edge shows that the

Booking agent uses its port (PTResSMS) to receive book-

ing requests from the Cell phone, and delivers the requests

to the Booking server through its port (PTLSMS).

Fig. 14 Links for Booking server and Booking agent

6.1.4 Style for OMTBS

Most of the large, complex software systems might con-

tain many subsystems and each of them may follow differ-

ent styles. In our example, the Booking Client submits the

ticket booking information to the Booking server, and the

Booking server will send events to the Booking client to

awake the Booking agent to deliver the booking results to

the customers. This is a typical Event style. Besides, the

super node – Booking client follows the client/server style.

Three essential elements need to be specified in the ar-

chitecture style, i.e., template, edge and style constraints.

Fig. 15 shows part of the event style definition of Book-

ing server and Booking client. The event style requires

two types of node templates – event publisher (NTBS) and

event listener (SNTBC). The edges between the NTBS and

SNTBC are also defined. For example, the edge ConPSMS



C. Li et al. / xBreeze/ADL: A Language for Software Architecture Specification and Analysis 561

and LConSMS help the communication of processing the

booking request through SMS. The StyleConstraintID ref-

erences the corresponding style constraints which are de-

fined in the Constraints part.

6.1.5 Constraints for OMTBS

xBreeze/ADL encapsulates three types of the con-

straints, i.e., behaviour constraints, style constraints and

user-defined constraints.

Fig. 15 Event style definition

Fig. 16 gives the part of behaviour constraints for Book-

ing Client and Booking server. The ActionDependence

specifies the action (CallerSMStBS) of the port template

(PTPSMS) of Booking client (SNTBC) that should hap-

pen before the action (CallerSMStBS) of the port tem-

plate (PTLSMS) of Booking server (NTBS). The TimeDe-

pendence requires that the action (CallerSMStBS) of port

template (PTLSMS) of Booking server (NTBS) is only al-

lowed to be invoked between 9:00 to 22:00 per day. Be-

sides, the state of Booking server (NTBS) should be ac-

tive when the action (CallerSMStBS) starts. Three actions,

i.e., CallerSMStBS, CallerAPPtBS and CallerWEBtBS, of

Booking Agent (NTBA) could be executed in a parallel way.

In OMTBS, the Booking client, containing four

nodes−Booking agent, Cell phone, PAD and Laptop, is a

super node. It can be looked as a subsystem which follows

the Client/Server style. One of its style constraints – Not-

ClienttoClient01 is defined through the Production. In the

super node (Booking client), the Booking agent is the server

and the rest of the components (i.e., Cell phone, PAD and

Laptop) are clients. Thus, all communications happen be-

tween the server and clients, and the clients cannot interact

with each other. The LHS of the Production describes that

the node template of Cell phone (NTCP) connects with

the node template of PAD (NTPAD) through the connec-

tor template (NTCON). There are two edges (CPtCon and

ContPAD) helping build connections between them, which

violate the constraints of client/server style. The RHS re-

moves the edges and eliminates this violation. The user-

defined constraints can also be specified through the Pro-

ductions.

6.1.6 Instance for OMTBS

Fig. 17 describes two instances of Booking Server and

Booking Agent, i.e., NIBS (referring to the NTBS template)

and NIBA (referring to the NTBA template). Their port

instances are PIPSMS and PILSMS which come from the

PTPSMS template and PTLSMS template separately. Two

edge instances are also described, i.e., InsConPSMS and In-

sLConSMS. Since those ports are created by the templates

which bind their basic actions together, the edges only need

to connect the port instances together here. The StyleID

attribute indicates that the instance follows the Event style

which is already defined in the Constraints part.

Fig. 16 Specification of constraints

6.2 Architecture configuration manage-
ment for OMTBS

In order to support the architecture dynamic evolution,

xBreeze/ADL supports three types of reconfiguration op-

erations (i.e., addition, removal and replacement). It also

assigns the running pattern (i.e., sequence, parallel and iter-



562 International Journal of Automation and Computing 13(6), December 2016

ation) to the above reconfiguration operations for describing

the composite operations.

Fig. 18 gives two Addition operations, adding an instance

of Cell phone (NICP02) and adding an instance of PAD

(NIPAD04), to the OMTBS. Two productions, AddCell-

Phone02 and AddPAD04, help to build the connections

between the new instances and the two connectors (i.e.,

NICon01 and NICon02), respectively. The SequenceAnd-

Parallel indicates such two productions can be executed in

parallel.

Fig. 17 Instance of booking server and booking agent

6.2.1 Summary

In this section, a double-style (i.e., Event style and

client/server style) system−OMTBS is introduced to show

how to model software architecture in xBreeze/ADL.

By taking the advantages of other software architec-

ture description techniques (e.g., xADL, AGG, rapide,

Breeze/ADL), xBreeze/ADL can specify the fundamental

structure information of OMTBS (e.g., templates and in-

stance of booking server and booking agent), and the dy-

namic (e.g., constraint, reconfiguration) behaviour. Espe-

cially, the virtual/concrete link, reconfiguration operation,

running pattern and the constraint representations which

help to understand how the components interact with each

other in OMTBS according to the system or customer′s re-

quirements.

7 Conclusions and future work

In this paper, we proposed an ADL−xBreeze/ADL to

specify and analyse the software architecture for large and

complex software systems.

The advanced features of xBreeze/ADL are as follows: 1)

it provides a flexible specification by leveraging the XML

as its meta language, 2) it enhances the extensibility of ar-

chitecture by separating the template from instance, 3) it

identifies service execution flows within a component by us-

ing the virtual link, 4) it depicts the semantics by specifying

the component behaviours, 5) it deals with constraints is-

sues by capitalizing the multiple restrictions, such as the

action dependence, time dependence, state dependence and

execution dependence, and 6) it implements the architec-

ture verification and reconfiguration for enhancing the ar-

chitecture dynamism and evolvability by introducing the

graph transformation.

Fig. 18 Addition operations and the parallel execution

Currently, we are working on constructing an

xBreeze/ADL toolset to model the software architecture on

both static and dynamic aspects based on Breeze toolset,

since the Breeze already supports the basic constraint and

reconfiguration definition and execution. The next step

of xBreeze/ADL development is to define template and

instance separately, support more style definitions, imple-

ment semantic expressing and achieve the virtual/concrete

link representation.

References

[1] C. Li, L. P. Huang, L. X. Chen, C. Y. Yu. Breeze/ADL:
Graph grammar support for an XML-based software archi-
tecture description language. In Proceedings of the 37th
IEEE Computer Software and Applications Conference,
IEEE, Kyoto, Japan, pp. 800–805, 2013.

[2] C. Li, L. P. Huang, L. X. Chen, C. Y. Yu. BGG: A graph
grammar approach for software architecture verification



C. Li et al. / xBreeze/ADL: A Language for Software Architecture Specification and Analysis 563

and reconfiguration. In Proceedings of the 7th International
Conference on Innovative Mobile and Internet Services in
Ubiquitous Computing, IEEE, Taichung, Taiwan, China,
pp. 291–298, 2013.

[3] R. Allen, D. Garlan. A formal basis for architectural con-
nection. ACM Transactions on Software Engineering and
Methodology, vol. 6, no. 3, pp. 213–249, 1997.

[4] R. Allen, R. Douence, D. Garlan. Specifying and analyzing
dynamic software architectures. In Proceedings of the First
International Conference on Fundamental Approaches to
Software Engineering, Springer, Lisbon, Portugal, vol. 1382,
pp. 21–37, 1998.

[5] D. Garlan. An Introduction to the Aesop System, [Online],
Available: http://www.cs.cmu.edu/afs/cs/project/able/
www/aesop/html/aesopoverview.ps, May 10, 2015.

[6] A. Terry, R. London, G. Papanagopoulos, M. Devito. The
ARDEC/Teknowledge Architecture Description Language
(ArTek), Version 4.0, Technical Report, Teknowledge Fed-
eral System and U. S. Army Armament Research, Develop-
ment and Engneer. Centery, USA, 1995.

[7] N. Medvidovic, P. Oreizy, J. E. Robbins, R. N. Taylor. Us-
ing object-oriented typing to support architectural design in
the C2 style. ACM SIGSOFT Software Engineering Notes,
vol. 21, no. 6, pp. 24–32, 1996.

[8] P. Binns, M. Englehart, M. Jackson, S. Vestal. Domain-
specific software architectures for guidance, navigation and
control. International Journal of Software Engineering and
Knowledge Engineering, vol. 6, no. 2, pp. 201–227, 1996.

[9] W. Tracz. LILEANNA: A parameterized programming lan-
guage. In Proceedings of IEEE 2nd International Work-
shop on Software Reusability, IEEE, Lucca, Italy, pp. 66–
78, 1993.

[10] M. Moriconi, R. A. Riemenschneider. Introduction to SADL
1.0: A Language for Specifying Software Architecture Hi-
erarchies, Technical Report SRI-CSL-97-01, SRI Interna-
tional, USA, 1997.

[11] M. M. Gorlick, R. R. Razouk. Using weaves for software
construction and analysis. In Proceedings of IEEE 13th
International Conference on Software Engineering, IEEE,
Austin, USA, pp. 23–34, 1991.

[12] J. Magee, N. Dulay, S. Eisenbach, J. Kramer. Specifying dis-
tributed software architectures. In Proceedings of the 5th
European Software Engineering Conference, Springer, Sit-
ges, Spain, vol. 989, pp. 137–153, 1995.

[13] D. C. Luckham, J. Vera. An event-based architecture defini-
tion language. IEEE Transactions on Software Engineering,
vol. 21, no. 9, pp. 717–734, 1995.

[14] M. Shaw, R. DeLine, D. Klein, T. Ross, D. Young, G. Ze-
lesnik. Abstractions for software architecture and tools to
support them. IEEE Transactions on Software Engineering,
vol. 21, no. 4, pp. 314–335, 1995.

[15] D. Garlan, R. Monroe, D. Wile. ACME: An architecture de-
scription interchange language. In Proceedings of the 1997
Conference of the Centre for Advanced Studies on Collabo-
rative Research, ACM, Ontario, Canada, pp. 159–173, 1997.

[16] E. M. Dashofy, A. Van der Hoek, R. N. Taylor. A highly-
extensible, XML-based architecture description language.
In Proceedings of 2001 Working IEEE/IFIP Conference
on Software Architecture, IEEE, Amsterdam, The Nether-
lands, pp. 103–112, 2001.

[17] H. Mei, F. Chen, Q. X. Wang, Y. D. Feng. ABC/ADL: An
ADL supporting component composition. In Proceedings
of the 4th International Conference on Formal Engineering
Methods, Springer, Shanghai, China, vol. 2495, pp. 38–47,
2002.

[18] C. A. R. Hoare. Communicating sequential processes. Com-
munications of the ACM, vol. 21, no. 8, pp. 666–677, 1978.

[19] G. Taentzer. AGG: A graph transformation environment for
modeling and validation of software. In Proceedings of the
2nd International Workshop, Lecture Notes in Computer
Science, Springer, Charlottesville, USA, vol. 3062, pp. 446–
453, 2004.

[20] W. P. Jiao, H. Mei. Automated adaptations to dynamic
software architectures by using autonomous agents. Engi-
neering Applications of Artificial Intelligence, vol. 17, no. 7,
pp. 749–770, 2004.

Chen Li received the B. Sc. degree in
computer science and technology from Uni-
versity of Science and Technology of China,
China in 2003, the M. Sc. degree in com-
puter applications technology from the Uni-
versity of Shanghai for Science and Technol-
ogy, China in 2010, and the Ph.D. degree
in computer science and technology from
Shanghai Jiao Tong University, China in

2015. Currently, he is a postdoctoral research assistant in School
of Humanities and Cultural Industries at Bath Spa University,
UK. He has published about 28 refereed journal and conference
papers. He is a member of CCF and IEEE.

His research interests include software architecture, software
reliability and formal methods.

E-mail: c.li2@bathspa.ac.uk
ORCID iD: 0000-0001-6249-8957

Hong-Yi Yang received the B. Sc. and
M. Sc. degrees in computer science from the
Jilin University, China in 1982 and 1985,
respectively, and the Ph.D. degree in com-
puter science from Durham University, UK
in 1994. He was a faculty member at Jilin
University, China in 1985, at Durham Uni-
versity, UK in 1989, at De Montfort Uni-
versity, UK in 1993, and at Bath Spa Uni-

versity, UK in 2013. Currently, he is a professor in School of Hu-
manities and Cultural Industries at Bath Spa University, UK. He
has published about 400 refereed journal and conference papers.
He has become IEEE Computer Society Golden Core member
since 2010. Also, he is a member of EPSRC Peer Review College



564 International Journal of Automation and Computing 13(6), December 2016

since 2003. He is the editor in chief of International Journal of
Creative Computing, InderScience.

His research interests include software engineering, creative
computing, web and distributed computing.

E-mail: h.yang@bathspa.ac.uk (Corresponding author)
ORCID iD: 0000-0001-6561-3631

Mei-Yu Shi received the B. Sc. and
M. Sc. degrees in economic from the Jilin
University, China in 1990 and 1997, respec-
tively, and the Ph. D. degree in economic
from Graduate School of Chinese Academy
of Social Sciences, China in 2003. Cur-
rently, she is a professor at the Tourism In-
stitute of Beijing Union University, China.
She has published about 40 refereed journal

and conference papers.
Her research interests include intangible cultural heritage

tourism development, tourism shopping and tourism products
development, convention and exhibition tourism, tourism desti-
nation marketing.

E-mail: shimeiyu72@163.com

Wei Zhu received the Ph.D. degree in
computer science and computer engineer-
ing from La Trobe University, Australia
in 2013. Currently, he is a lecturer of
Tourism Institute of Beijing Union Univer-
sity, China.

His research interests include artificial
intelligence and data mining in tourism.

E-mail: wzhu83@163.com


