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Abstract: This paper presents the design of decentralized repetitive control (RC) for multi-input multi-output (MIMO) systems. An

optimization method is used to obtain a RC compensator that ensures system stability and good tracking performance. The designed

compensator is in the form of a stable, low order, and causal filter, in which the compensator can be implemented separately without

being merged with the RC internal model. This will reduce complexity in the implementation. Simulation results and comparison

study are given to demonstrate the effectiveness of the proposed design. The novelty of design is also verified in experiments on a 2
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1 Introduction

Tracking periodic commands are common tasks found in

many control systems such as disk drive, optical disc player,

and pick-and-place robot. Repetitive control (RC) gives

superior performance for tracking references compared to

a non-predictive control schemes such as proportion inte-

gral (PI) and proportion integration differentiation (PID)

controller[1]. This is due to the capability of RC to learn

the periodic signal values, and then generate them as an

output. RC consists of two parts; an internal model and

a RC compensator. The internal model refers to the in-

ternal model principle (IMP) originated from Francis and

Wonham[2], which states that the reference model needs to

be attached to the feedback loop in order to achieve zero

tracking error. The compensator is part of RC used to en-

sure closed-loop system stability.

RC compensator designs for single-input single-output

(SISO) systems have been widely investigated in [3 − 13].

A compensator in the form of inverse of the plant model

was proposed in [3 − 6], where the design aims to perfectly

cancel the phase of the plant model. In [7, 8], a compen-

sator is designed based on pole placement, and it is ob-

tained by solving diophantine equation. Panomruttanarug

and Longman[9] uses optimization to obtain a compensator

that approximates the inverse of the plant model. In [10] ,

a compensator in the form of non-causal FIR filter was de-

signed based on Taylor expansion. A compensator design

based on direct adaptive control to handle unknown and

time-varying plant model was proposed in [11]. Design of
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a discrete output-feedback compensator for a class of lin-

ear plants with periodic uncertainties was investigated in

[12]. In [13], a compensator in the form of causal IIR filter

is proposed, where the compensator is obtained by solving

the minimization problem.

Unlike for SISO RC systems, there are still few RC de-

signs for multi-input multi-output (MIMO) systems, where

some of them were found in [14–19].

In [14], a new MIMO RC structure was proposed for peri-

odic wind disturbance rejection in fixed-speed wind turbines

and variable-speed wind turbines. While, a new compen-

sator structure which consists of adaptive internal model

for minimum and non-minimum phase linear MIMO sys-

tems was given in [15]. An MIMO RC structure for tracking

periodic references for uncertain linear systems subject to

control saturation was proposed by Flores et al.[16]. Wang

et al.[17] proposed an MIMO RC structure for tracking pe-

riodic signals by using receding horizon control with fre-

quency decomposition of the reference signals. Jeong and

Faben[18] proposed a discrete-time RC compensator called

as phase cancellation inverse (PCI) matrix. The proposed

compensator operates by compensating the phase lag in the

diagonal elements of the plant model. The idea is initiated

from the zero phase tracking error controller (ZPETC)[5]

design for SISO system, which aims to cancel the phase re-

sponse of the plant. Xu[19] proposed an optimization based

RC compensator to mimic the inverse of the MIMO model.

The approaches[18, 19] are based on the centralized MIMO

design which results in a compensator with the same dimen-

sion as the plant. This implies that if we have an m × m

MIMO system (m2 transfer functions), then we need to have

m2 RC sub compensators. Moreover, the designs also end

up with a non-causal compensator that needs to be merged

with the internal model to make it realizable. This raises
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the complexity of the implementation, especially when the

order of the internal model is high.

The fact that most MIMO control problems including

majority of industrial process applications are still based on

decentralized controller[20, 21] gives a motivation to design

an RC compensator on decentralized basis. A decentralized

control also exhibits several advantages such as flexibility

in operation, simplified design and tuning, etc[22]. In spite

of the above practical benefits, the decentralized control

cannot surpass the performance of centralized control in the

presence of strong couplings[21]. However, this drawback of

decentralized control has been extensively dealt in many

literatures[21−24] .

This paper presents an RC compensator design of MIMO

systems based on the decentralized control. Early efforts for

such control designs have been made in [25, 26]. Using de-

centralized control, the proposed design will only have m

sub compensators, which is far less than that in [18, 19].

Another advantage of the proposed design is that the sub

compensators are in a low order, stable and causal form.

This form of compensator can be implemented indepen-

dently without being merged to the internal model that is

normally in high order. This feature can reduce the com-

plexity in the design implementation. A complete series

of simulation, comparison study and experiments is carried

out to demonstrate the effectiveness of the proposed algo-

rithm.

This paper is organized as follows. Section 2 presents

an overview of MIMO RC system, which covers the general

structure of MIMO RC feedback control and its stability

analysis. Section 3 describes a design method to obtain the

proposed compensator. Simulation results and a compari-

son study are provided in Section 4. Experimental results

of the 2 degrees of freedom (DOF) robot plant are presented

in Section 5. Section 6 concludes the paper.

2 MIMO RC System

The general structure of MIMO RC system is shown in

Fig. 1, where G(z) is the plant model with m × m transfer

functions, Grc(z) is the repetitive controller, U rc(k) is the

repetitive control signal, Y (k) is the tracking output, E(k)

is the tracking error, R(k) is reference signal, and {U rc(k),

Y (k), E(k), R(k) ∈ Rem} 1.

Fig. 1 General structure of MIMO RC system

1Note: Matrix notation is in bold style

The transfer function of discrete-time MIMO RC is

Grc(z) = F (z)
q(z)z−N

1 − q(z)z−N
(1)

where N = Ts
T

, N is number of samples per reference period,

Tr is the reference period, T is the sampling period, q(z)

is a zero-phase low pass filter, and F (z) is a compensator

matrix.

The term

[
q(z)z−N

(1−q(z)z−N)

]
in (1) is sometimes called a mod-

ified internal model, and behaves as a generator of periodic

signal. The use of zero-phase low pass filter q(z) is similar to

that in SISO case, which aims to improve robustness against

unmodeled dynamics[18, 27]. The compensator matrix F (z)

here is part of RC required to stabilize closed-loop of the

MIMO RC system. F (z) generally has the same dimen-

sion as the plant model, and it is represented in following

matrix:

F (z) =

⎡
⎢⎣

f11(z) · · · f1m(z)

· · · f22(z) · · ·
fm1(z) · · · fmm(z)

⎤
⎥⎦ . (2)

To assess the stability of MIMO RC system, we need to

derive the characteristic equation of the closed-loop system.

The transfer function from R(z) to Y (z), and the tracking

error E(z) of the MIMO RC system shown in Fig. 1 are

given as follow:

Y (z)

R(z)
=

q(z)F(z)G(z)

(zNI − (I − F (z)G(z))q(z))
(3)

E(z) =
zN − q(z)

(zNI − (I − F (z)G(z))q(z))
R(z). (4)

Let S(z) be

S(z) = zNI − (I − F (z)G(z))q(z) (5)

where I is an m × m identity matrix.

The stability of the MIMO RC system above can be ex-

amined from the location of the zeros of the characteristic

equation. The characteristic equation can be obtained by

calculating the determinant of the transfer function S(z)

(detS(z)). For a stable system, all zeros of detS(z) have

to be inside the unit circle. Calculating detS(z) can be

troublesome due to the order of N is normally large. For

instance, a robot performing a repetitive task with a period

of 1 s at sampling period of 1ms, we have N = 1000[28].

Therefore, examining the location of zeros of detS(z) is

less effective. Instead of examining the zeros of the char-

acteristic equation, the stability can be assessed in simpler

way as shown in (6). The overall MIMO RC system is stable

if the following conditions are satisfied[19]:

1) G(z) is a stable MIMO plant.

2) det(I − F (z)G(z))q(z)) < 1, ∀ 0 < ω <
π

T
. (6)

A stable MIMO plant is the first requirement in the de-

sign of RC, while the stability condition (6) becomes a
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basis in the design of F (z) since G(z) and q(z) are con-

sidered as known variables. The stability condition (6)

also ensures that the tracking error of RC MIMO sys-

tem converges to zero for all possible N , and for all pos-

sible initial conditions, if and only if the magnitude of

det((I −F (z)G(z))q(z))) is less than one for all frequencies

up to the Nyquist frequency[19].

Thus, the compensator matrix F (z) needs to be carefully

designed in order to ensure the stability of the MIMO RC

system. Later on, the stability condition (6) is used as a

constraint in the proposed optimization problem to obtain

F (z).

3 RC compensator design

Let the plant be an MIMO system with square matrix as

shown in the equation below:

G(s) =

⎡
⎢⎣

g11(s) . . . g1m

. . . g22(s) . . .

gm1(s) . . . gmm(s)

⎤
⎥⎦ . (7)

The plant G(s) has an equal number of outputs and in-

puts, where the relations between outputs and inputs are

given as follows:

⎡
⎢⎢⎢⎣

y1(t)

y2(t)

· · ·
ym(t)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

g11(s)u1(t) + · · · + g1m(s)um(t)

g21(s)u1(t) + · · · + g2m(s)um(t)

· · ·
gm1(s)u1(t) + · · · + gmm(s)um(t)

⎤
⎥⎥⎥⎦ (8)

where y1(t), · · · , ym(t) are the 1st to m-th plant outputs,

and u1(t), · · · , um(t) are the 1st to m-th plant inputs.

We use an assumption that the MIMO system can be

treated on decentralized basis as motivated in [20, 21]. De-

centralized basis aims to approximate the MIMO system by

a set of SISO systems. The decentralized term here means

ignoring dynamics that result in weak interactions. Each

of the system outputs is approximated from the input re-

sponse that gives dominant contribution. Therefore, the

degree of interaction is necessary to be quantified. Relative

gain array (RGA) introduced by [29] is one of the tech-

niques termed as dominant interaction control method that

can be used to determine the best input output pairings for

multivariable control.

RGA is defined as matrix Λ which is formulated as fol-

lows:

Λ = G(0). ∗ [G−1(0)]T (9)

where G(0) and G−1(0) are system dc gain matrix and its

inverse, notations .∗ and T operate as element wise multi-

plication and transpose of matrix respectively.

In particular, the best pairings are picked up from the

entries of Λ that are large. Suppose the diagonal en-

tries of Λ have larger values than the off-diagonal entries,

then the best pairings are [yi, uj ](i,j)=(1,1),(2,2),··· ,(m,m).

This also means that we consider the transfer functions

[gij(s)](i,j)=(1,1),(2,2),···(m,m) as the strong dynamics that

give dominant contribution to the plant outputs. In con-

trary, if the off-diagonal entries have largest values, then the

best pairings are [yi, uj ](i,j)=(1,m),(2,m−1),··· ,(m,1) pairings.

To design compensator, we firstly need the infor-

mation regarding the best pairings obtained from the

RGA analysis. For instance, RGA analysis suggests

[yi, uj ](i,j)=(1,1),(2,2),··· ,(m,m) pairings, then F (z) will only

have elements in the diagonal:

F (z) =

⎡
⎢⎣

f11(z) 0 0

0 f22(z) 0

0 0 fmm(z)

⎤
⎥⎦ (10)

where f11(z), · · · , fmm(z) are m- sub compensators to be

designed.

F (z) above consists of m sub compensators, which

are far less compared to the general compensator

shown in (2). From (10), the sub compensator2

fji(z)(j,i)=(1,1),(2,2),··· ,(m,m) will be designed to compensate

the dynamics of gij(z)(i,j)=(1,1),(2,2),··· ,(m,m), where gij(z) is

a discrete model of gij(s) at sampling period T . Thus, there

are m sub compensators needed to be designed. Adopting

the design method in [13], the sub compensator here is de-

signed to minimize the magnitude response of the following

stability condition:

|(1 − f(z)g(z))q(z)| < 1, ∀ 0 < ω <
π

T
(11)

where f(z) and g(z) are the compensator and plant model

of SISO RC system, respectively.

Stability condition (11) can be interpreted that an ideal

compensation of the plant g(z) can be achieved if the magni-

tude response of ((1− f(z)g(z))q(z)) is zero for all frequen-

cies up to the Nyquist. This ideal compensation can be

obtained if we choose the compensator f(z) as the exact in-

verse of the plant model. However, the inverse of the plant

model is sometimes not available due to uncertainties[30],

and the inverse model is almost unstable due to zeros of

discrete-time plant are close to the unit circle[31]. More-

over, the inverse of discrete-time plant model will always

be in non-causal form. Instead of obtaining an exact in-

verse of the plant g(z), f(z) can be designed in the form of

any filter as long as it gives a small value to left hand side

of (11) for all frequencies up to Nyquist. Here, optimization

method is employed to find f(z) that minimizes that term.

To simplify the notation, let us rewrite fji(z) as

fj(z), where j = 1, 2, · · · , m corresponds to (j, i) =

(1, 1), (2, 2), · · · , (m, m) respectively. The sub compensator

fj(z) has the following stable causal form.

fj(z) =
cj0z

nj + cj1z
nj−1 + · · · + cjnj

(z − pj1)(z − pj2) · · · (z − pjnj )
, nj > 0 (12)

where cj0, cj1, · · · , cjnj , pj1, pj2, · · · , pjnj are parameters of

fj(z) to be obtained.

2Note: the sub compensator notation is in fji(z) instead of fij(z).
This is due to the output of F(z) is the input of G(z).
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Let the following objective function is defined for a single

sub compensator fj(z):

hj =

N
2∑

k=1

|(1 − fj(z)gj(z))q(z)|ω=ωk , ∀ωk =
2πk

NT
(13)

where ωk is k-th harmonic of the reference signal (rad).

Since there are m sub compensators, the total objective

function is given as

hTotal =
m∑

j=1

hj . (14)

Now, we propose the optimization problem as shown in

(15). The first condition in (15) consists of
∑m

j=1 nj bound

constraints which guarantee that all poles of fj(z)j=1,2,··· ,m

are inside the unit circle. The positive constant γ ensures

that the obtained poles are within a safe distance from the

unit circle.

min
[c10,··· ,c1n1 ,··· ,cm0,··· ,cmnm ,p11,··· ,p1n1 ,··· ,pm1,··· ,pmnm ]

hTotal

Subject to:

1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 + γ
...

−1 + γ
...

−1 + γ
...

−1 + γ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

<

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p11

...

p1n1

...

pm1

...

pmnm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

<

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − γ
...

1 − γ
...

1 − γ
...

1 − γ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2) |det(I − F (z)G(z))q(z))|ωk < 1 − ε,∀ωk =
2πk

NT
,

k = 1, · · · ,
N

2
(15)

where p11, · · · , p1n1 are n1 poles of f1(z), pm1, · · · , pmnm

are nm poles of fm(z), |det(I − F (z)G(z))q(z))|ωk is the

magnitude of det [(I − F (z)G(z))q(z)] at frequency ωk,

and γ and ε are small positive constants.

The second condition guarantees that the MIMO RC sys-

tem is stable within a positive margin of ε. Solving above

minimization problem will give all parameters of the sub

compensators (
∑m

j=1 2nj + 1 parameters). Thus, the com-

pensator matrix F (z) can be obtained.

The design procedure to obtain the compensator matrix

F (z) can be summarized as follows:

1) Perform RGA analysis (9) to obtain the best pairings.

2) Solve the optimization problem (15) by firstly choos-

ing the following variables; a filter q(z), compensator order

[nj ]j=1,··· ,m, positive constants γ and ε.

Remark 1. In case that the off-diagonal entries

of Λ have largest values, then F (z) will have ele-

ments in the off-diagonal. Here, the sub compensators

fji(z)(j,i)=(1,m),(2,m−1),··· ,(m,1) will be obtained, where

f1m(z), f2(m−1)(z), · · · , fm1(z) are designed to compen-

sate the dynamics of gm1(z), g(m−1)2(z), · · · , g1m(z) respec-

tively. Let us rewrite fji(z) as fj(z), where j = 1, 2, · · · , m

corresponds to (j, i) = (1, m), (2, m − 1), · · · , (m, 1). Let

us also rewrite gij(z) as gi(z) where i = 1, 2, · · · , m cor-

responds to (i, j) = (1, m), (2, m − 1), · · · , (m, 1). In this

notation, f1(z) will compensate gm(z), while f2(z) will com-

pensate gm−1(z), and so on. Hence, the objective function

(13) is modified to (16), while the total objective function

(14) and the optimization problem (15) do not change.

hj =

N
2∑

k=1

|(1 − fj(z)gm+1−j(z))q(z)|ω=ωk ,

∀ωk =
2πk

NT
. (16)

The proposed design can be applied for both minimum

and non-minimum phase plant. However, it is still limited

for a class of square MIMO model. This is due to the RGA

analysis and MIMO stability assessment which require the

calculation of the inverse of the matrix. For future research,

the works can be extended to a non-square MIMO model.

4 Simulation results

Simulation is performed to validate the effectiveness of

the proposed design. A 2 × 2 MIMO model of a 2 DOF

robot is used. The MIMO model represents the plant used

in the real-time experiments, and has the following transfer

functions:

G(s) =

[
g11(s) g12(s)

g21(s) g22(s)

]
(17)

where

g11(s) =
1.021

0.006s2 + 0.119s + 1
(18)

g12(s) =
−0.014s + 0.397

26.430s2 + 7.202s + 1
(19)

g21(s) =
−0.003s

0.007s2 + 0.120s + 1
(20)

g22(s) =
1.003

0.005s2 + 0.115s + 1
. (21)

The RGA test (9) suggests that the dynamics of g11(s)

and g22(s) give dominant interaction to output y1(t) and

y2(t) respectively. Thus, the sub-compensator f11(z) and

f22(z) are required to compensate g11(z) and g22(z), re-

spectively.

Let the period of reference signal and the sampling pe-

riod be 2 s and 0.025 s respectively. This gives the num-

ber of samples per reference period N as 80. The zero

phase low pass filter q(z), compensator order (nj)j=1,2, pos-

itive constants γ and ε, are chosen respectively as follows:

q(z) = 0.25z + 0.5 + 0.25z−1, n1 = 2, n2 = 2, γ = 0.075,

and ε = 0.05. Solving the optimization problem (15) by

using optimization toolbox matlab results in the following

compensator matrix:

F (z) =

[
f11(z) 0

0 f22(z)

]
(22)
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where

f11(z) =
35.600z2 − 56.910z + 24.340

z2 + 1.850z + 0.860
(23)

f22(z) =
32.290z2 − 50.310z + 21.110

z2 + 1.850z + 0.860
. (24)

Equations (22)−(24) show that the obtained sub compen-

sators have low order, stable and causal transfer functions.

In the simulation, both channels are required to track trian-

gular reference signals, where the reference signal of channel

2 is started 0.5 s after of channel 1 . The tracking outputs

and errors are shown in Fig. 2, where the tracking errors

vanish in about three repetitions. This shows the good

tracking performance of the proposed compensator.

Fig. 2 Tracking results of the proposed compensator (a) track-

ing output y1(k), (b) tracking output y2(k), and (c) tracking

errors e1(k), e2(k)

A comparison study is also given to show the significance

of the proposed compensator. The comparison study is con-

ducted with the PCI compensator proposed in [18]. The

PCI compensator is based on the zero phase tracking er-

ror controller (ZPETC) of the SISO RC system proposed

in [5], where the design aim is to perfectly cancel the phase

response of the plant. The PCI is a matrix function such

that[18]

F pci(z)G(z) = Im×m(z). (25)

Fig. 3 Tracking results of the PCI compensator (a) tracking

output y1(k), (b) tracking output y2(k), and (c) tracking errors

e1(k), e2(k)

PCI compensators of stable minimum and non-minimum

phase systems are formulated in (26) and (27), respectively

F pci(z) = AdjG(z)
1

detG(z)
(26)

F pci(z) = AdjG(z)
β−(z−1)

β+(z)
(27)

where AdjG(z) is the adjoint of G(z), β+(z−1) and β−(z)

are stable and unstable part of detG(z) respectively,

β+(z−1) is β+(z) with operator z is replaced with the back-

ward shift operator z−1.

F pci(z) =

[
f11(z) f12(z)

f21(z) f22(z)

]
(28)

where

f11(z) =
21.940z3 − 15.210z2 − 14.390z + 10.970

z2 + 1.673z + 0.699
(29)

f12(z) =
3.850z5 − 14.320z4 + 22.9803 − 18.540z2 + 7.520z − 1.230

z4 + 0.097z3 − 1.290z2 − 0.020z + 0.450
(30)
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f21(z) =
10−2(0.380z5 − 1.930z4 + 3.6603 − 3.360z2 + 1.510z − 0.270)

z4 − 0.320z3 − 1.640z2 + 0.270z + 0.690
(31)

f22(z) =
19.650z3 − 12.390z2 − 13.330z + 9.440

z2 + 1.673z + 0.699
. (32)

To design a PCI compensator for the plant model in (17),

we need to examine the zeros and poles of detG(z). The

detG(z) has 6 zeros and 8 poles, where all zeros and poles

are inside the unit circle. Thus, the discrete plant G(z) is

stable minimum phase system. The obtained PCI compen-

sator matrix is shown in (28)−(32).

We can see that PCI based RC has 4 sub compensators,

and two of them have the order as high as 5, while the

proposed compensators have only 2 sub compensators and

both have the order of 2. Moreover, all PCI based RCs

are non-causal, which cannot be stand-alone, and have to

be combined with the internal model as illustrated in the

equation below:

Gpci
rc (z) =

⎡
⎢⎣

q(z)

zN − q(z)
f11(z)

q(z)

zN − q(z)
f12(z)

q(z)

zN − q(z)
f21(z)

q(z)

zN − q(z)
f22(z)

⎤
⎥⎦ . (33)

Fig. 3 shows that the tracking outputs of PCI follow the

trajectories after one repetition, while the tracking outputs

of the proposed compensator shown in Fig. 2 take about

three repetitions. This shows the superiority of the PCI

in terms of the convergence rate. This is due to the unity

gain of (F pci(z)G(z)). The unity gain results in uniform

convergence, where the tracking error vanishes within one

cycle[18]. The proposed compensator only approximates the

inverse of strong dynamic elements in the plant model. This

makes the unity gain of (F pci(z)G(z)) hard to achieve. In

terms of complexity, the proposed compensator is simpler

than the PCI as it only has m sub compensators. More-

over, all sub compensators are in low order, stable, and

causal form. The complexity of the PCI design will arise

when the plant model is of the high order and the choice of

sampling period is very small.

5 Experimental results

This section presents the experimental results of the pro-

posed compensator. The real-time experiments are con-

ducted on the 2 DOF Quanser robot plant pictured in Fig. 4.

Fig. 5 shows a set of Quanser hardware used in the experi-

ments. Two servo motors mounted at a fixed distance con-

trol two arms coupled via two non-powered two-link arms.

The system has 2 actuated and 3 unactuated revolute joints.

The 4-bar linkage system gives coupling effect to the actu-

ated joints. The 2 DOF Quanser robot is a 2×2 MIMO sys-

tem, and its transfer functions are experimentally modeled

using system identification toolbox of matlab, and given in

(17)−(21).

The experiments aim to control the end effector (joint E)

to have diamond shape movement. This can be done by giv-

ing a triangular reference signal at each channel. The refer-

ence signals are in X −Y Cartesian coordinates (Exd, Eyd),

where Exd and Eyd values are fed to Channels 1 and 2,

respectively. The period of both Exd and Eyd are 2 s, and

Eyd is started 0.5 s after Exd. The proposed compensator is

used to control the position of the end effector. The track-

ing outputs and errors of the system are shown in Fig. 6,

while the end-effector X − Y position response is shown in

Fig. 7.

Fig. 6 shows that the tracking errors in both channels

converge to zero after 3 repetitions. Figs. 2 (c) and 6 (c) in-

dicate that the tracking errors between simulation and ex-

perimental results show similar transient behavior, where

they converge after 3 repetitions. However, the tracking er-

rors at steady state are different as shown in Fig. 8. Fig. 8

shows that the tracking error from the experiment has larger

amplitude and more noisy compared to the tracking error

from the simulation.

Fig. 7 shows the trace of end-effector E in inches after

reaching a steady state. It can be seen that the trace (red

line) forms a diamond shape, and it accurately follows the

set point (blue line). This tracking performance verifies the

effectiveness of the proposed design, and also validates the

simulation results presented in the previous section.

Fig. 4 2 DOF Quanser robot plant[32]

Fig. 5 Experimental system hardware setup
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Fig. 6 Tracking output: (a) Ex(k); (b) Ey(k); (c) ex(k) and

ey(k).

Fig. 7 End effector X − Y position response of the proposed

compensator

6 Conclusions

This paper presents compensator design for MIMO RC

system based on decentralized control. Relative gain array

(RGA) analysis was used initially to obtain the best pairing

of inputs and outputs. Then, the compensator matrix that

guarantees the stability of MIMO RC system, was designed

using optimization to obtain low order, stable and causal

sub compensators. The proposed compensator has been

verified by simulation and real-time experiments.

Fig. 8 Steady state tracking error from (a) the simulation and

(b) the experiment.
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