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Abstract: In order to fully utilize all potential available network resources and make the interoperability of systems possible, we

propose to integrate cloud computing and peer-to-peer (P2P) computing environments together. We utilize the mobile multi-agent

technology to construct an effective hierarchical integration model named Cloud-P2P. As the original management mechanisms for

traditional cloud computing and P2P computing systems are no longer applicable to Cloud-P2P, we propose a novel hybrid collaborative

management ring based on mobile multi-agent in order to ensure the efficiency and success rate of task implementation in the Cloud-

P2P environment. This mechanism needs to divide the system into core ring, cloud inner rings and several peer rings. In each ring,

every node is in collaboration with its neighbor nodes with multi-agent, or uses mobile agent moving from node to node with string

or parallel methods to monitor the statuses and performances of all nodes, in order to avoid problems of performance bottleneck and

single point failure. This paper analyses the node conditions of cloud computing and P2P computing environments in-depth, then

elaborates on Cloud-P2P and the hybrid collaborative management ring based on mobile multi-agent (HCMRMMA). After that, the

construction method of the network ring topology for Cloud-P2P is introduced. Finally, experimental results and performance analysis

of HCMRMMA are presented.
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1 Introduction

New network computing technologies are constantly

emerging. Two distributed computing models, cloud com-

puting and peer-to-peer (P2P) computing, have attracted

extensive attentions.

In the last few years, cloud computing as a new comput-

ing paradigm has gone through significant development[1, 2].

Cloud computing can support application systems obtain-

ing computation, storage and information services as they

require transparency and cost-effectiveness by distributing

tasks on the resource pool consisting of cluster servers.

Three cloud service models emerged: infrastructure as a

service (IaaS), platform as a service (PaaS) and software as

a service (SaaS)[3]. Cloud computing platforms have some

particular features, such as easy-to-program, high fault-

tolerance, expandable, which make large-scale distributed

data processing possible[4, 5]. Google, Yahoo, IBM, Amazon

have all developed their own cloud computing platforms[6],

supporting large-scale information retrieval, data mining,

business information processing, scientific computing, and
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other applications.

P2P computing also changes the traditional, unequal

network computing models such as client/server comput-

ing (C/S) and browser/server computing (B/S). P2P com-

puting can fully utilize network edge computing and stor-

age resources. In the P2P computing environment, each

peer can be a server and a client at the same time.

P2P computing offers a flexible and expandable plat-

form for information sharing, direct communication, and

collaboration[7−9] . At present, P2P technology is primar-

ily applied to the Internet-based file sharing systems, such

as Napster, Gnutella, Freenet, BitTorrent, eMule, etc. The

SETI@Home project at the University of California utilizes

P2P computing power to analyze radio signals to search for

extraterrestrial intelligence.

As stated above, cloud computing focuses on the re-

sources of network center servers, while P2P computing fo-

cuses on the resources of network edge nodes. Although

there are differences between cloud computing and P2P

computing, both are adapted to solve distributed comput-

ing and resource sharing problems. If they can be combined

together efficiently, Internet infrastructure and applications

will be utilized with best efficiency and low-cost.

In order to fully consider and utilize all the potential

available resources of cloud computing and P2P computing

environments, we propose to integrate the cloud computing

environment and the P2P computing environment together.

The main contributions are summarized as follows:

1) We analyze the nodes of cloud computing and P2P
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computing environments in depth, and adopt mobile multi-

agent technology to construct an effective hierarchical in-

tegration model named Cloud-P2P in this paper and make

the interoperability of integrated Cloud-P2P systems pos-

sible.

2) As the original management mechanisms for tradi-

tional cloud computing systems are no longer applicable

to Cloud-P2P, we also propose a novel hybrid collabora-

tive management ring based on mobile multi-agent (HCM-

RMMA) in order to ensure the efficiency and success rate

of the task implementation in the Cloud-P2P environment.

The ring topology suitable for Cloud-P2P and its manage-

ment mechanism are also presented.

The rest of the paper is organized as follows. In Section 2,

we analyze the cloud computing and P2P computing envi-

ronments in depth. Section 3 elaborates on the hierarchi-

cal integration model of Cloud-P2P based on mobile multi-

agent. In Section 4, HCMRMMA is proposed. Experiments

and performance evaluation are presented in Section 5. Fi-

nally, Section 6 concludes the paper by summarizing the

main contributions of this paper and giving future direc-

tions of this work.

2 Analysis of cloud computing and P2P

computing environments

In cloud computing systems, almost all complicated func-

tions are transferred to cluster servers, greatly simplifying

client-side workloads. The operation procedure of cloud

computing is usually as follows: Firstly, the terminal user

accesses the network and requests his requirement to the

cloud computing system. If the requirement is accepted,

the system organizes resources and divides tasks to provide

services to the clients via the Internet. The system takes

these terminals as stupid nodes, which actually regresses

to the old centralized computing mainframe. The target of

virtualization for cloud computing is to optimize the con-

figuration of resources rapidly to do more computing tasks

concurrently with low-cost[10, 11].

Current cloud systems usually deploy both high-

performance nodes and cheap cluster servers at the same

time. High-performance nodes are very expensive and re-

sponsible for the whole system management. For exam-

ple, Google file system (GFS) and BigTable technologies

are used for data storage and MapReduce technology is

used for large-scale parallel computing on the Google cloud

platform. The Google cloud platform integrates thou-

sands of ordinary chunk servers to store data and exe-

cute tasks. In order to prevent data loss caused by node

failures, Amazon′s Dynamo and Google′s BigTable both

backup their data with three copies at different nodes to

maintain system operating stably and constantly[12−14].

However, in P2P computing environments, resources do

not come from the server nodes. Each peer is not only a

consumer but also a service provider[7]. Because the ap-

plications on many network edge nodes generally process

human-computer interaction transactions, computing de-

vices are always at the idle state, resulting in huge waste of

computing and storage resources. Obviously, different from

those high-performance server nodes operating 7×24h con-

tinuously, and cluster servers under the centralized manage-

ment and the direct control, peers can dynamically and ran-

domly join or leave P2P computing environments. When

a peer joins the P2P computing environment, it may con-

tribute its idle resources and provide services, but this be-

havior is clearly not reliable, and the quality of service is

difficult to ensure. Even so, the number of nodes in the P2P

computing environment is always very huge, so utilization

of redundancy to improve performance is entirely possible.

In short, the research on cloud computing and P2P com-

puting has made a series of important achievements. Some

researchers are even trying to apply the P2P architecture

and technologies into cloud systems for making them scal-

able, efficient and fault-tolerant computing platforms[15, 16].

However, effective integration of resources of cloud com-

puting and P2P computing is almost non-existent for both

academia and industry.

3 Integration model of cloud and P2P

computing

3.1 System architecture

As the above analysis shows, current cloud computing

systems continue to ignore the computational capabilities

and storage resources of edge nodes. The resource utiliza-

tion rate remains in an unbalanced state. As more and

more applications based on massive computing and storage

resources are constructed and deployed, systems will soon

face the performance bottleneck problem once again. In or-

der to solve the contradiction, we propose a new integration

model of cloud and P2P computing.

The integration model of cloud and P2P computing

(Cloud-P2P) is composed of three layers including the sta-

ble core management layer, the less stable cloud resource

layer and the unstable P2P resource layer. The core man-

agement layer consists of master servers responsible for the

management of all Cloud-P2P nodes, resource and task

deployment. The cloud resource layer consists of cluster

servers. And the P2P resource layer consists of peer nodes.

The three layers together constitute a huge information,

storage and computation resource pool.

There are two kinds of peer in the P2P resource layer:

One is stable and can provide reliable services. The other

is unstable and strongly random which cannot ensure the

quality of service (QoS). These two kinds of peer may also

switch in a kind of “convection” situation. The system

should pick honest and reliable peers to execute tasks as

much as possible.

3.2 Cloud-P2P model based on mobile
multi-agent

Agent can be defined in broad and narrow senses. In the
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broad sense, agent generally refers to physical robots in the

real world and software robots in the information world.

In this paper, based on the mobile agent system interoper-

ability facility (MASIF) and the foundation for intelligent

physical agents (FIPA) specifications of agent, we define

agent in the narrow sense as follows:

Definition 1. Agent is a kind of software entity, which

has bigger granularity than the object, encapsulating meth-

ods, data, attributes and states. Agent has several charac-

teristics, such as autonomy, sociality and mobility.

Agency is the container of agent which provides the

communication service, the registry service, the migration

mechanism, the persistence mechanism and the security

mechanism.

Mobile multi-agent systems contain not only static mul-

tiple agents which can collaborate with each other but also

mobile agents which can migrate among nodes, as shown in

Fig. 1.

Fig. 1 Mobile multi-agent system

In order to build the Cloud-P2P model based on mobile

multi-agent, agents and their operating platform should be

set up on each node. This means that it is possible to utilize

a group of decentralized, loosely coupled distributed intelli-

gent agents in a Cloud-P2P computing environment to sim-

ulate the organization of human society in order to achieve

highly-efficient intra-or-inter-group collaboration and effec-

tive solutions to solve a variety of conflicts and contradic-

tions. As shown in Fig. 2, the Cloud-P2P model can be

classified into five layers:

1) Network layer (NL): Master servers and cluster servers

compose the local area networks of cloud computing envi-

ronment and peers compose P2P computing environments

at the edge of the Internet, which have great diversity in

transmission mediums, communication protocols and inter-

face methods. Especially, peers can join and leave the net-

work at their own will, making many useless short connec-

tions with very negative influence on network performance.

In order to make information exchange smooth, the net-

work layer should dynamically change the topology of the

network.

2) Resource layer (RL): There are many resources in the

resource layer distributed on servers and peers. In order

to achieve the highest level of automation on demand, re-

sources must be virtualized. The large-scale virtualized re-

source pool based on a network platform can supply users

with all kinds of information service. Virtualization im-

proves the efficiency and usability of the application and

resource, achieving the optimized allocation of various re-

sources to process more parallel tasks on the platform.

3) Management layer (ML): This is mainly used for the

management and maintenance of the entities, resources, se-

curity, robustness and accounting of the system, ensuring

tasks can be deployed and scheduled efficiently. A task

scheduler can be applied to multiple nodes with parallel

operation or deep computing. Service management is used

to manage the services and its related modules provided

by the system compared with a traditional distributed sys-

tem. The Cloud-P2P system is more dynamic (especially

the peer nodes, which are highly autonomous), making the

system′s security and reliability difficult to maintain. On

the other hand, the enormous number of nodes in a P2P

network can be used to ensure the reliability and stability

of the system with redundancy.

4) Collaboration layer (CL): This is an agent society built

with the multi-agent technology. This kind of design means

that all coordination, cooperation and negotiation tasks are

the duty of agents of the collaboration layer. It makes the

collaboration layer become an independent unit and makes

complex collaboration flexible and reliable.

5) Application layer (AL): In the Cloud-P2P model,

this layer provides users with application-oriented advanced

functions based on basic services of fundamental layers. The

layer consists of different components. Instead of being in-

stalled on nodes in advance, components are deployed by

mobile agents dynamically based on the negotiation results

of multi-agents. Components can be made and distributed

by task owners. This mechanism ensures that nodes can

cooperate flexibly with each other in unpredictable envi-

ronments.

Fig. 2 Five layers of the Cloud-P2P model based on mobile

multi-agent

4 Hybrid collaborative management

ring based on mobile multi-agent

4.1 Problem analysis

Most P2P network computing systems use the decen-

tralized structure without the central management node.

Therefore, this structure makes the system looks like a sim-
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ple nodes collection. The system′s dynamic and random re-

sponse relies on node cooperating themselves. As the num-

ber of nodes and resources increasing, the system tends to

anarchy, resources are hard to share, and complex cooper-

ation is hard to set up.

Compared with P2P computing systems, cloud com-

puting systems usually utilize the centralized management

mechanism. For example, in Hadoop, the MapReduce

framework consists of a single master JobTracker and slave-

TaskTrackers. The master is the only one responsible for

scheduling jobs′ component tasks on the slaves, monitor-

ing them, and re-executing any failed tasks. The manage-

ment cost increases significantly as the number of nodes

increases[17]. The Google cloud platform uses the tradi-

tional server-farm model, and deploys one or several mas-

ter servers to manage and monitor the statuses of servers,

achieving the load balancing and the failure detection. The

IBM′s Blue Cloud platform uses Tivoli provisioning man-

ager and Tivoli monitoring, which is also based on a cen-

tralized architecture. Jerome Boulon designed and imple-

mented a large-scale monitoring system based on Hadoop

named Chukwa[18, 19], which still utilizes the centralized ar-

chitecture for monitoring task process, device performance

and system malfunction. UC Berkeley initiated an open

source cluster monitoring project called Ganglia[20] , which

is used to measure the operation of thousands of nodes

and provide performance data for cloud computing sys-

tems. Each node in the Ganglia system collects informa-

tion and sends a daemon called gmond. All these repeated

data collection and sending processes will affect the sys-

tem performance. Carnegie Mellon University developed

DSMon which can collect the resource status and load infor-

mation of each node in distributed computing systems[21].

Somasundaram and Govindarajan[22] designed a cloud re-

source broker (CLOUDRB) for efficiently managing cloud

resources and completing jobs for scientific applications

within a user-specified deadline, which was implemented

and integrated with the deadline-based job scheduling and

particle swarm optimization (PSO)-based resource alloca-

tion mechanism, intending to achieve the objectives of min-

imizing both execution time and cost based on the defined

fitness function.

The main defects of the centralized management mecha-

nism are the bottleneck problem and the single point fail-

ure problem[23]. The advantages of the centralized manage-

ment mechanism includes the powerful controllability and

the convenient and flexible maintenance.

Povedano-Molina[24] proposed DARGOS, a distributed

architecture for resource management and monitoring in

clouds, which ensures an accurate measurement of physical

and virtual resources in the Cloud keeping a low overhead

at the same time. DARGOS has been integrated into a real

cloud deployment based on OpenStack. In Amazon′s elas-

tic cloud computing (EC2), there is CloudWatch[25], which

is used to monitor the states of EC2 instances, resource

utilization, CPU utilization, network traffic, etc. Amazon′s
cloud storage architecture Dynamo adopts the distributed

hash table (DHT)-based P2P network architecture, empha-

sizing the decentralized structure. Dynamo uses the Gossip-

based distributed fault detection scheme to monitor and

control nodes and their workloads automatically, reducing

the manual administration involved. However, Dynamo is

not suitable for highly dynamic, large-scale systems. Too

many nodes can make the system performance dramatically

worse.

As stated previously, the number of nodes in a cloud is

limited, which means the centralized management mecha-

nism is still workable. But, Cloud-P2P obviously cannot

use the “heartbeat” mechanism, because the huge number

of peer nodes sending cycle heartbeats will bring too much

network communication burden, and exhaust the master

nodes′ resources.

4.2 Hybrid composite collaborative man-
agement ring based on mobile multi-
agent

In order to solve the problems discussed above, we pro-

pose a novel hybrid collaborative management ring based

on mobile multi-agent, including the collaborative manage-

ment ring model (CCMR) and the mobile-agent-based man-

agement ring model (MAMR).

As shown in (1), the hybrid ring is composed of three

kinds of rings: the master ring (MR), which consists of

master nodes, the server ring (SR), which consists of clus-

tered servers, and the peer ring (PR), which consists of a

group network edge nodes.
⎧
⎪⎨

⎪⎩

MR = {m1, m2, · · · , mx}
SR = {s1, s2, · · · , sy}
P ={PR1, PR2, · · · , PRz}, PRi = {Pi,1, Pi,2, · · · , Pi,j}.

(1)

As shown in Fig. 3, the hybrid collaborative management

ring requires nodes staying aware of each other. In this way,

the nodes have the self-management ability to avoid the sin-

gle point failure problem.

There are static and dynamic agents in HCMRMMA.

The nodes′ collaboration inside and outside rings are con-

verted to the agents′ interaction and collaboration.

Each node contains several static agents to monitor the

performance of the node itself and other neighbor nodes.

The aim of building this management mechanism is to im-

prove the efficiency and success rate of the system. Each

node may be in one of the following three statuses:

Status 1 (available). The node is online and able to un-

dertake tasks.

Status 2 (unavailable). The node is online, but cannot

(no capacity or unwilling) undertake any task.

Status 3 (offline). The node is offline.

Nodes can switch from one status to another dynamically.

Generally, each node would like to share its spare CPU

and memory and other idle resources only on the premise

of ensuring its normal work. Therefore, we set some ap-

propriate strategies for nodes. One of them is to set the

threshold for their own CPU and memory. If the threshold

is exceeded, the node will not undertake any extra tasks
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Fig. 3 Hybrid collaborative management ring

and switches to Status 2. When its own CPU and memory

becomes non-busy and this continues for a certain period

of time, the node will switch back to Status 1.

Unlike the traditional grouping strategy focusing on re-

gions and resources, we group peers based on the time they

spend online and the patterns of their activities. This is

mainly based on considerations to maintain the stability of

the peer ring, which system will be easier to manage even

in the case of nodes joining and leaving the ring frequently.

The master server works as the system manager, respon-

sible for segmenting jobs into tasks and scheduling tasks

at the same time. In order to avoid the single point fail-

ure problem, the shadow nodes of the master server must

be set as back-up. Shadow nodes hold the replicas of all

information on the master server nodes. When the infor-

mation on a master server node changes, the information on

its shadow nodes will update at the same time. The mas-

ter server and its shadow nodes must monitor each other′s
current situations by regularly sending heartbeats to each

other.

1) CCMR

Each node in CCMR contains several static agents run-

ning in the agency. Agents realize the coordination ac-

tivities with the agent communication language (ACL),

which is based on the theory of speech acts by Cohen and

Levesque. The following is an ACL message example: node

m1 sends heartbeat information to node m2, and asks m2

to return its status:

(inform-one

: sender

: content (heartbeat)

: receiver

: reply-with (status)

: language Standard Prolog

: ontology Cloud & P2P management )

In Fig. 3, for m1, both m2 and m3 are its shadow nodes.

For m2, m1 and m4 are its core shadow nodes. If m1

crashes, the shadow node m2 or m3 can immediately take

on the work of m1. m2 or m3 can be used to restore m1
′s

data when m1 is restarted, repaired or replaced. Any in-

formation on the master server has three copies, since the

possibility of simultaneous failure of three nodes is 10−9,

which means the system is robust.

The P2P resource layer is divided into several distributed

hash table (DHT)-based peer rings, which can make the sys-

tem more structured and more easily integrated with the

cloud computing system.

For example, m3 is responsible for the management of

peer ring PR1, but m3 does not need to interact with the

nodes in the ring frequently, because the peer node state

monitoring relies on the interaction between nodes them-

selves.

As shown in Fig. 3, p1,1 is monitored by p1,13 and p1,2.

Both p1,13 and p1,2 are monitored by p1,1 at the same time.

If p1,1 went offline abnormally before it completes its tasks,

p1,13 and p1,2 would not receive heartbeat messages sent

from p1,1 in a certain time, they will report the abnormal

information to m3, and then set up the supervision rela-

tionship between themselves.

2) MAMR

The agent transfer protocol (ATP) allows an agent to

migrate among nodes, assigning the implementation envi-

ronment and service interface for agent.

As shown in Fig. 4, agents communicate with each other

and access the services provided by the agency through

ACL.

ATP defines the mobile agent transfer syntax and se-

mantics, implementing the migration mechanism of mobile

agent between the service facilities. Based on IBM′s ATP

framework, the basic operations used in Cloud-P2P include

dispatch, retract, message and response.
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If SR contains a larger number of nodes, it can also use

the CCMR architecture. However, if the number of nodes

in SR was not that large, MAMR, as shown in Fig. 5, would

be a better choice.

Fig. 4 Structure of the mobile agent system

As shown in Fig. 5, the master server sends several mobile

agents into a SR in parallel. Each agent migrates clockwise

along the ring serially. Supposing SR contains n nodes, the

master server node sends j agents uniformly into SR in par-

allel. If the number n happens to be a multiple k (k is an

integer) of j, the cruising path of agent sent to node S i by

the master sever is

m2→ Si→ Si+1→· · ·→ Si+k−1→ m2.

The cruising path of the agent can be based on its routing

strategy. If n happens to be a multiple r (k < r < k+1 ) of j,

the cruising path of Agentk, which is sent to node Sk×j+1,

is

m2→ Sk×j+1→ Sk×j+2→· · ·→Sn→ m2.

If S i+l+1 does not respond when Agent i is cruising from

S i to S i+l and about to move to S i+l+1, S i+l will imme-

diately send a message that S i+l+1 has no-response to m2.

Then, the agent tries to migrate to S i+l+2 according to its

routing table.

Fig. 5 Mobile-agent-based management ring model

4.3 Topology of HCMRMMA

A major problem of HCMRMMA is how to build the

topology structure of the ring. In the system, there are

three kinds of ring, MR, SR and PR, which have significant

differences:

1) The performance of nodes in MR is very stable. As MR

contains fewer nodes, the system can configure the node ID

manually and put the nodes into a bidirectional ring just

based on their IDs.

2) As both SR and PR contain a much larger number

of nodes, the topology of the two rings must be able to

adapt to the requirements of a large-scale network com-

puting environment′s effective positioning, load balancing,

better scalability, etc.

In order to achieve HCMRMMA in the integration envi-

ronment of cloud and P2P computing, we designed a new

ring topology which is suitable for MR, SR and PR. Firstly,

the system creates the RingID for each ring uniquely which

identifies the type and other attributes of ring. Then, the

system creates the NodeID for each node in the ring. So

the identifier of each node consists of two parts, RingID and

NodeID. NodeID is the node identifier in the ring. Nodes

are aligned clockwise from small to large by key value from

0 to 2m −1(m is the digits of NodeID), and then make up a

loop topology. For node with NodeID= k, the online node in

the clockwise direction of the ring within a specified range

is its successor node, denoted as Successor(k). The online

node in the counterclockwise direction of the ring is its pre-

decessor node, denoted as Predecessor(k). Each node in the

ring establishes a monitoring relationship with its predeces-

sor and successor. It is obvious that they need to know the

situation of their predecessor and successor nodes in real

time.

However, if a node only knew the situation of its di-

rect predecessor and successor, then when either of them

failed, especially for a large number of node failures, the

node would not be able to establish the monitoring re-

lationship with its new precursor and successor nodes as

quickly as possible. In this paper, we use RingTable and

PartRingTable to solve this problem.

1) RingTable and PartRingTable

There are two kinds of tables in the system: One is called

RingTable, deployed in core nodes, storing the information

of all nodes of all rings. The other is called PartRingTable.

Each node has its own PartRingTable which stores the in-

formation of its direct and indirect neighbor nodes in the

same ring. If a ring contains n nodes, the space complex-

ity of each PartRingTable is log n. The content of Par-

tRingTable is shown in Table 1.

Table 1 Definition of each element in PartRingTable

PartRingTable Definition

NodeID The node identifier

RingID The ring identifier

Distance The network distance to the node where

this PartRingTable exists

Place Predecessor or Successor

Status available, unavailable or offline

“Distance” in Table 1 means the relative network distance

to the node where this PartRingTable exists. The network

distance of one node to its direct predecessor and successor

nodes is “−1” and “1”, respectively. The network distance

of the node to its first indirect predecessor and successor

node is “−2” and “2”, respectively.

As shown in Fig. 6, supposing there is a node whose
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NodeID is 4 (i.e., Node4) in a ring whose RingID is x and

contains 16 nodes, the PartRingTable in Node4 has 4 en-

tries. Node4
′s direct predecessor is Node2 and its direct

successor is Node6. In addition, the PartRingTable also

includes the information about the direct predecessor of

Node2 and the direct successor of Node6. In this way, if

Node2 or Node6 fails, Node4 can build the new relationship

of Node1 with Node10 or quickly update its PartRingTable

straightaway.

2) Nodes joining and exiting a ring

When a node wants to join a ring, it needs the core node

to introduce it, help it to initialize its PartRingTable and

update its neighbor nodes′ PartRingTables. For example,

as shown in Fig. 5, if Node3 wants to join Ringx, it should

follow these processes:

Step 1. Node3 sends a message containing its identifier

to the core node to request to join Ringx. The core node

checks the message and returns a digital certificate and a

response message to Node3. The response message contains

the information of Node2 and Node4.

Step 2. When Node3 receives the response message, it

will contact Node2 and Node4 immediately to initialize its

own PartRingTable.

Step 3. When Node2 and Node4 receive the message

called UpdatePredReq and UpdateSuccReq from Node3,

they will update their PartRingTables and inform Node1

and Node6 to update their PartRingTables.

If a node tries to exit a ring, there are two possibilities:

One is the node exiting the ring normally, and the other

is the node exiting abnormally. The normally exiting node

has to send a message requiring to logout to a core node,

and inform its predecessor and successor that it is going

to exit the ring. After its predecessor and successor receive

the notification, they will update their own PartRingTables.

However, if the node fails to do those things due to some

unexpected reasons, such as the link to the network discon-

nects, system failure or random user action, its predecessor

and successor need to update their own PartRingTables ini-

tiatively to maintain the stability of the ring.

The ring proposed in this paper not only applies to parse-

node failure, but also applies to the continuous-node failure.

When continuous nodes in a ring exit the ring abnormally,

the core node will receive one report from the nodes pre-

decessor or successor, then the server will send a message

to the nodes successor or predecessor to check its status. If

the nodes successor or predecessor also exit abnormally, the

core node will take appropriate measures.

As shown in Fig. 6, supposing Node0, Node1 and Node2

abnormally exit the ring almost together, the core node will

receive a report from Node15 about the failure of Node0 and

a report from Node4 about the failure of Node5. As the core

node does not receive the report from Node1 which is the

successor of Node0, the core node will send a message to

Node1 to check its status. If Node1 fails to respond to the

core node, the core node will know that Node1 also exits

and deal with the report sent by Node15 and confirm the

exit of Node0. The same process is also used to confirm the

failure of Node2.

5 Experiments and performance analy-

sis

The following are the simulation experiments on HCMR-

MMA, including CCMR and MAMR. Especially, we com-

pared HCMRMMA with the traditional centralized man-

agement mechanism (CM) on the load of nodes, the effi-

ciency of failure detection, etc.

5.1 Load of nodes

We built the simulation experimental platform for HCM-

RMMA in the Cloud-P2P system in an intranet environ-

ment. The experiment parameters are set as follows:

1) The interval time that a task execution node sends the

heartbeat message to a core node: 10 s

2) The interval time that a task execution node sends the

heartbeat message to each other: 6 s

3) The failure rate of task execution nodes: 5%

4) The reconstruction rate of task execution nodes: 50 %

5) The period of the experimental time: 10 000 s

6) The judgment time of node failure: 30 s.

Fig. 6 Topology of hybrid collaborative management ring
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As shown in Fig. 7, with increasing number of nodes, the

number of monitoring reports increases both with CM and

with CCMR, but the growth rate with CM is significantly

greater with CCMR.

Fig. 7 Number of reports the core node receives under different

node scales

Fig. 8 shows that the number of reports the core node re-

ceives with CCMR is significantly less than that with CM.

In summary, CCMR can significantly reduce the resource

consumption of the core node.

Fig. 8 Number of reports the core node receives with CM and

CCMR

The system switches the traditional method of task exe-

cution nodes reporting regularly to the management node

into regular communication between task execution nodes.

Fig. 9 shows the statistics for resource consumption. In

CCMR, each node is monitored by its predecessor and suc-

cessor nodes, so the consumption is greater than that in the

CM model. But for all the nodes in the system, the average

cost of each node is very low.

5.2 Efficiency of failure detection

In the following, we show the experiment results for the

efficiency of node failure detection with CCMR, MAMR

and CM. The experiment parameters are set as follows:

1) The total number of nodes: 10 000

2) The interval time that a task execution node sends the

heartbeat message to a core node in CM: 9 s

3) The interval time that a task execution node sends the

heartbeat message to each other: 9 s

4) The interval time of determining node failure: 3×9 s.

5) The time that a task execution node sends the heart-

beat message to a core node in CCMR: 800 ms

6) The time that an agent migrates from one node to

another in MAMR: 800 ms.

Fig. 10 shows the experiment results under different node

failure rates. The gray bar shows the average time of core

nodes finding out task execution node failure in the situa-

tion where the node failure rate is 1%. The black bar shows

the average time of core nodes finding out task execution

node failure when the node failure rate is 10%. We can see

that the failure rate does not significantly affect the per-

formance of the three management models. In MAMR, the

time cost on finding a disabled node depends on its position

in the agent migration route.

Fig. 9 Number of reports in the system with CM and CCMR

Fig. 10 Average detection time of failed nodes under different

rates of node failure

The later the agent migrates to a node, the longer the

time cost to find its failure. Supposing the number of nodes

in a ring is n, the number of agents dispatched is m, and
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Fig. 11 Detection time of failed nodes under different node scales

the time an agent migrates from one node to another is t,

the average detection time of node failure is n
2m

× t.

Fig. 11 shows the experimental results of detection time

under different nodes scales. We find that increasing nodes

does not significantly affect the performance of CM and

CCMR. In CM, the failed node will be found after sev-

eral heartbeat cycles. In CCMR, the failed node can be

detected in the same way. However, in MAMR, a failed

node can only be found while an agent tries to migrate to

the node, the node scale significantly affects the detection

efficiency of node failure. With increasing node scale, the

migration path of an agent becomes longer, which makes

the detection efficiency lower. The average detection time

is inversely proportional to the number of nodes. Even so,

we can dispatch more agents migrating in parallel in the

ring.

Fig. 12 The detection time of failed nodes with different number

of agents

As shown in Fig. 12, increasing the number of agents can

reduce the detection time, which is inversely proportional

to the number of agents. At the same node scale, the in-

creasing number of agents reduces the migration distance

of each agent and increases the test frequency of each node.

As a result, the detection efficiency is improved. It can be

found that MAMR is applicable for the stable Cloud Re-

source Layer.

6 Conclusions

One of the core objectives of modern network comput-

ing and information communication is to eliminate infor-

mation islands and maximize aggregation of all WAN and

LAN computing, storage and information resources to meet

the requirements of large-scale computing and massive data

processing. Compared with traditional cloud systems, the

Cloud-P2P system proposed in this paper can aggregate a

wider range of resources and further eliminate the informa-

tion island problem.

However, Cloud-P2P is an open large-scale computing

environment. Security, reliability, stability and scalability

are its major problems. HCMRMMA has been proved by

experiments that it is applicable for large-scale computing

environments, especially Cloud-P2P. HCMRMMA can ef-

fectively maintain the stability and reliability of Cloud-P2P.

Follow-up works should focus on how to improve service

security and credibility of Cloud-P2P. It is important to

consider the possibility that malicious network edge nodes

hiding in Cloud-P2P systems may attack the networks via

fake services, conspiracy, non-cooperation and other ma-

licious behaviors. Simple, efficient and quantitative trust

mechanism and incentive mechanism will become our focus

of future research for realizing a more robust Cloud-P2P

system.

Acknowledgments

We would like to thank the reviewers for their detailed

comments and suggestions throughout the reviewing pro-

cess that helped us significantly improve the quality of this

paper.

References

[1] W. J. Fan, S. L. Yang, H. Perros, J. Pei. A multi-
dimensional trust-aware cloud service selection mechanism
based on evidential reasoning approach. International Jour-
nal of Automation and Computing, vol. 12, no. 2, pp. 208–
219, 2015.



550 International Journal of Automation and Computing 13(6), December 2016

[2] Y. K. Guo, L. Guo. IC cloud: Enabling compositional cloud.
International Journal of Automation and Computing, vol. 8,
no. 3, pp. 269–279, 2011.

[3] J. F. Zhao, J. T. Zhou. Strategies and methods for cloud
migration. International Journal of Automation and Com-
puting, vol. 11, no. 2, pp. 143–152, 2014.

[4] P. Mell, T. Grance. The NIST definition of cloud com-
puting. Communications of the ACM, vol. 53, no. 6, pp. 50,
2010.

[5] Y. Huang, N. Bessis, P. Norrington, P. Kuonen, B. Hirs-
brunner. Exploring decentralized dynamic scheduling for
grids and clouds using the community-aware scheduling
algorithm. Future Generation Computer Systems, vol. 29,
no. 1, pp. 402–415, 2013.

[6] C. L. Cheng, C. J. Sun, X. L. Xu, D. Y. Zhang. A multi-
dimensional index structure based on improved VA-file and
CAN in the cloud. International Journal of Automation and
Computing, vol. 11, no. 1, pp. 109–117, 2014.

[7] G. Chmaj, K. Walkowiak. A P2P computing system for
overlay networks. Future Generation Computer Systems,
vol. 29, no. 1, pp. 242–249, 2013.
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