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Abstract: In this paper, a hybrid particle swarm optimization (PSO) algorithm with differential evolution (DE) is proposed for

numerical benchmark problems and optimization of active disturbance rejection controller (ADRC) parameters. A chaotic map with

greater Lyapunov exponent is introduced into PSO for balancing the exploration and exploitation abilities of the proposed algorithm.

A DE operator is used to help PSO jump out of stagnation. Twelve benchmark function tests from CEC2005 and eight real world opti-

mization problems from CEC2011 are used to evaluate the performance of the proposed algorithm. The results show that statistically,

the proposed hybrid algorithm has performed consistently well compared to other hybrid variants. Moreover, the simulation results

on ADRC parameter optimization show that the optimized ADRC has better robustness and adaptability for nonlinear discrete-time

systems with time delays.
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1 Introduction

Particle swarm optimization (PSO) was proposed by

Kennedy and Eberhart in 1995, which was inspired by the

bird flocking social behavior[1, 2]. Due to its implementa-

tion simplicity, few parameters and fast convergence, PSO

has been successfully applied in many areas[3−5]. While

the PSO algorithm can converge quickly in early stages,

it is prone to diversity loss during iterations, and may get

trapped in a local optimum. Therefore, how to overcome

the local optimum drawback is still an important issue for

PSO applications. Hybridization is one of the most effi-

cient strategies to improve the performance of optimization

algorithms[6]. Researchers have conducted many related

studies and proposed various hybrid algorithms based on

PSO to deal with the problems of early loss of diversity, pre-

mature convergence and slow convergence rate. Differential

evolution (DE) is a population based stochastic search al-

gorithm, and was developed by Storn and Price[7]. Many

hybrid versions of DE and PSO have been presented in the

past decade. In [8], an algorithm combining DE algorithm

and PSO, called DEPSO-R, was proposed for economic dis-

patch problems. In that method, a particle′s position was

updated only if its offspring particle has better fitness, this
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strategy makes the algorithm has less computational com-

plex than some existing hybrid algorithms. Another hybrid

PSO algorithm coupled by a differential operator with the

velocity update scheme is proposed in [9], and the hybrid

PSO (PSO-DV) algorithm was reported with robust per-

formance on seven global optimization problems compared

with DE, PSO and other PSO variants. Another hybrid

algorithm named DEPSO-KL was presented by Kim and

Lee[10]; in this algorithm, each individual particle updates

its current position according to a predefined probability.

Through adaptive selection of control parameters, DEPSO-

KL can find the optimized solution with small numerical

oscillations.

In this paper, a novel hybrid version of PSO and differen-

tial evolution (DE), called HCPSODE, is proposed. A new

nonlinear strategy for decreasing inertia weights, along with

a chaotic map with greater Lyapunov exponent, is intro-

duced to balance the exploration and exploitation abilities

of the proposed algorithm. A DE operator is used to help

particles jump out of stagnation when the diversity of the

particles decreases rapidly at later stages of iterations. The

performance of the proposed HCPSODE is evaluated by

solving twelve of the CEC2005 contest functions and eight

CEC2011 real-world optimization problems, and studying

its application to parameter optimization of ADRC in con-

trolling nonlinear discrete-time systems with time delays.

2 Hybrid PSO algorithm

2.1 Basic PSO

In the basic PSO algorithm, a swarm is generated ran-
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domly in the search space. Each particle in the swarm rep-

resents a candidate solution, and is treated as a point flying

in the solution space. Each particle remembers its best posi-

tion denoted by pbest. The globally best position is denoted

by gbest, which represents the best position among all par-

ticles. The movement of each particle is determined by its

own previous best position and the globally best position.

The velocity and position of particle i are altered by the

following recursive equations:

Vid (t + 1) = ωVid (t) + c1 × rand1()(pbest (t) − Xid (t))+

c2 × rand2()(gbest (t) − Xid (t)) (1)

Xid (t + 1) = Xid (t) + Vid (t + 1) (2)

where Xi = (xi1, xi2, · · · , xid) and Vi = (vi1, vi2, · · · , vid)

are current position and current velocity of the i-th particle

respectively, ω is the inertia weight which balances the local

and global search during the optimization process, c1 and

c2 are cognitive and social acceleration factors respectively,

rand1() and rand2() are uniformly distributed random num-

bers in the range between 0 and 1.

2.2 Differential evolution

Differential evolution (DE) has gained much attention

due to its effectiveness and simplicity. As a parallel direct-

search meta-heuristic algorithm, DE is characterized by

memorizing of individual optimal value and sharing mutual

information. Its basic idea is the use of differential variation

and crossover recombination between individuals to gener-

ate trial vectors. Based on a greedy selection strategy, an

individual is generated from the target vector and trial vec-

tors, and is entered to the next generation. The procedures

for implementing a DE algorithm can be summarized as the

following steps[11]:

Step 1. Initialize D-dimensional population vectors with

NP individuals, and each individual can be described as

follows:

Xg
i = (xg

i1, x
g
i2, · · · , xg

iD), (i = 1, 2, · · · , NP ) (3)

where xg
ij represent the j-th dimension of the i-th individual

in the gth generation.

Step 2. Randomly select one individual from current

population as the target vector, and select two other differ-

ent individuals to produce the differential vector. A muta-

tion vector can be generated through the following strategy:

vg
i,j = xg

r1,j + F × (xg
r2,j − xg

r3,j) (4)

where r1, r2, r3 ∈ (1, 2, · · · , NP ) are integers randomly gen-

erated and mutually different, and are also different from i;

F ∈ (0, 2) is a scaling factor, and controls the amplification

of the differential vector.

Step 3. After generation of the mutation vector, for

each target vector xg
i,j , a crossover is produced between the

target vector and the mutation vector to generate a trial

vector ug
i,j .

ug
i,j =

{
vg

i,j , rand(0, 1) ≤ CR

xg
i,j , otherwise

(5)

where u denotes the trial vector, v is the mutation vector,

CR ∈ [0, 1] is called the crossover factor, and rand(0,1) is a

uniform random number generator.

Step 4. Using a greedy selection strategy, the selection

operation is performed to choose the better one from the

target vector and the trial vector to enter the next genera-

tion.

xg+1
i =

{
ug

i when f (ug
i ) < f (xg

i )

xg
i when f (ug

i ) ≥ f (xg
i )

(6)

where xg+1
i is the new individual in the next generation,

and f() is the fitness function. When the fitness function

value of the trial vector ug
i is smaller than that of the target

vector xg
i , the next generation will be replaced by ug

i .

Step 5. Repeat until the termination condition is met,

or it reaches to the maximum number of iterations.

2.3 Hybrid PSO and DE with a chaotic
map

For complex optimization problems, the basic PSO al-

gorithm can easily converge to local optimum, which leads

to slow convergence speed and premature convergence. The

main reason for premature convergence is that the diversity

of particles decreases rapidly during iterations. Chaos the-

ory has been applied into many fields including physics, en-

gineering and biology[12]. The main feature of chaotic sys-

tems is their sensitivity to initial conditions, even a minute

change in initial conditions can later lead to considerably

different behaviors. Several chaotic time-series sequences,

such as the logistic map, have been applied in optimiza-

tion. Optimization algorithms based on chaos theory are

stochastic search methodologies that differ from any of ex-

isting evolution algorithms[13] . In the basic PSO algorithm,

parameters such as the inertia weight ω, the cognitive and

social acceleration factors c1, c2, are key factors that de-

termine the PSO convergence performance[14, 15]. In our

proposed algorithm, a new nonlinear strategy is adopted

for decreasing the inertia weight:

ωi = ωend + (ωstart − ωend) (1 − q)⎧⎪⎨
⎪⎩

q =
t

tmax
, if

gbest

pbest
<

ti

tmax

q =
gbest

pbest
, if

gbest

pbest
≥ ti

tmax

(7)

where tmax is the maximum number of iterations, ti is the

current number of iterations, ωstart and ωend are the max-

imum and minimum of the inertia weight. The parame-

ters rand1() and rand2() affect the convergence performance

of PSO algorithm, in our proposed algorithm, an iterative

chaotic map with infinite collapses (ICMIC) is used because

it has greater Lyapunov exponent and is more sensitive to
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the initial value. Using of chaotic sequences in PSO can im-

prove the global convergence and help the algorithm escape

from local minima[16]. The ICMIC equation is given by

xn+1 = sin

(
a

xn

)
, n = 0, 1, 2, · · · , x0 �= 0, a > 0. (8)

The ICMIC map used in this work is illustrated in Fig.1.

Fig. 1 ICMIC chaotic map

The velocity and position of particles in the proposed

algorithm are updated by the following equations:

Vid (t + 1) = ωVid (t) + c1 × rc1 (t) (pbest (t) − Xid (t))+

c2 × rc2 (t) (gbest (t) − Xid (t)) (9)

Xid (t + 1) = Xid (t) + Vid (t + 1) (10)

where rc1 (t) and rc2 (t) are calculated from ICMIC map.

During the iteration process of basic PSO, once a par-

ticle finds a better solution, all the other particles will be

attracted and gathered to it quickly. When dealing with

problems with many local minima, the swarm will be stag-

nated due to the lack of momentum and the algorithm stops

evolving.

To avoid the stagnation often encountered by PSO, DE

algorithm is incorporated into the PSO. When the swarm

settles into stagnation state, DE is used to provide the nec-

essary momentum for particles to roam across the search

space and escape from the local optimum. Criteria for de-

tecting stagnation includes maximum swarm radius, clus-

ter analysis and objective function fitness. Differing from

aforementioned criteria, in our study, the median velocity

of vector norm of the particles (denoted by vm) is defined

as the state when vm approaches a pre-specified stagnation

threshold λ. λ is a positive scalar value to be specified

by the user. An empirical study shows that the proposed

method is not too sensitive to the stagnation threshold. As

the stagnation threshold determines when the DE operator

is to be merged into PSO, if it is set to reasonable conserva-

tive value, the hybrid chaotic particle swarm optimization

with differential evolution (HCPSODE) method yields im-

proved results.

The flowchart of HCPSODE algorithm is shown in Fig. 2.

3 Numerical experiments

A group of benchmark test problems have been se-

lected to evaluate the performance of the proposed HCP-

SODE algorithm. The benchmark test problems consist

of twelve (F6 − F17) multimodal test functions proposed in

the CEC2005 special session on real-parameter optimization

and 10 problems related to bound constrained optimization

proposed in the CEC2011 competition on real world opti-

misation problems.

Among the CEC2005 benchmark suite, F6−F12 are basic

multimodal functions, F13 − F14 are expanded multimodal

functions and F15−F17 are hybrid compositions of functions

with a large number of local minima.

More details about these test problems can be found in

[17−18].

Fig. 2 The optimization process of HCPSODE

3.1 Parameter settings and performance
metrics

As for the CEC2005 real-parameter optimization prob-

lems, simulation was conducted on HCPSODE algo-

rithm and compared with PSO-DV, CDEPSO[19], DEPSO-

EPV[20] and DEPSO[21], the parameters set up for the in-

volved algorithms are as follows: for the HCPSODE, the

inertia weight ωstart and ωend in (7) are set to 0.9 and

0.4 respectively, the parameter a in (8) is set at 5.56,
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x0 = 0.9, and the acceleration coefficients are set to be

c1 = c2 = 1.494 45, the pre-specified stagnation threshold λ

is set to 0.05. The crossover factor CR = 0.9 and the scale

factor F = 0.8. The population size NP is set two times of

decision variables, D. For the DEPSO, ω = 0.4, CR = 0.1,

c1 = c2 = 2, the population size is five times of the number

of decision variables. For CDEPSO, acceleration coefficients

c1 and c2 are set at 1.496 2, the inertia factor is 0.729 8, the

population size is taken six times of the number of decision

variables, both scaling factor F and crossover constant CR

are set at 0.5, and for PSO-DV, F = 0.8 and CR = 0.9

are same as [9], The population size was five times of deci-

sion variables. For DEPSO-EPV, F = 0.5 and CR = 0.9,

population size: NP = D, PSO topology: ring with neigh-

borhood radius nr = 2, c1 = c2 = 2.05.

The number of decision variables, D, was set to 10, 30

and 50 for all the test functions. To reduce the random

discrepancy and make a fair comparison between different

algorithms, 25 independent runs of all algorithms were ex-

ecuted, and the stopping condition of each run is based on

the maximum number of function evaluations (FEs) that

was set to D × 10 000.

The experiments were carried out on a PC with AMD

Athlon (tm) II X2 250 processor, 3.00 GHz and 3.25 GB

memory, and windows XP3 operating system.

In the experimental study, the solution error value, de-

fined as f(x)− f(x∗) was recorded, the mean and standard

deviation of the solution error value were used to evaluate

the performance of the hybrid PSO and DE variants, where

x is the global optimum of the benchmark function and x∗

is the best solution found by the algorithm after D×10 000

function evaluations.

To get statistically sound conclusions, the Wilcoxon rand

sum test was used to test whether the difference between

different algorithms results was statistically significant. The

test was conducted at 0.05 significance level. The Wilcoxon

test results (h) is summarized to indicate the number of

functions in which HCPSODE performs significantly better

than (denoted by +), almost the same as (denoted by ≈ ),

and significantly worse than (denoted by−) the other four

involved algorithm, respectively.

As for the CEC 2011 real-world optimization problems,

experiments were conducted between HCPSODE and the

top three methods, including GA-MPC[22], DE-ACr[23] and

SAMODE[24], which were proposed in the CEC 2011 com-

petition. A different stagnation detection strategy was used

to test the CEC2011 instances. During the implementation,

if there is no improvement on the gbest after several itera-

tions, that means the swarm is trapped into local optima

and stagnation is detected.

3.2 Experimental results and discussions

Tables 1 shows the results of the mean, standard devia-

tion of the function error and the Wilcoxon rank sum test

achieved by the five algorithms for all the selected CEC2005

test problems. The best results among those obtained by all

algorithms are marked in bold. The Wilcoxon test results

is to denote that HCPSODE performs significantly better

than (+), almost the same as (≈), and significantly worse

(−) than its peer algorithm respectively. Figs. 3–14 show

the convergence curve of the average function error for the

benchmark functions with 30 dimensions.

From Table 1 as well as the convergence curve figures, it

is clear that the HCPSODE is ranked first among the five

Fig. 3 The convergence curve of F6

Fig. 4 The convergence curve of F7

Fig. 5 The convergence curve of F8
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Fig. 6 The convergence curve of F9 Fig. 7 The convergence curve of F10

Table 1 Search results comparisons among different algorithms

Fi D PSO-DV CDEPSO DEPSO-EPV DEPSO HCPSODE
mean±standarddeviation mean±standarddeviation mean±standarddeviation mean±standarddeviation mean±standarddeviation

F6

10 1.05E+01±5.42E−01+ 1.95E+01±4.22E−01+ 1.05E+01±4.69E−01+ 3.04E+01±2.21E+01+ 6.69E+00±3.78E−01

30 1.80E+01±6.32E−01+ 2.18E+01±5.21E−01+ 1.20E+01±5.10E−01+ 3.28E+01±2.56E+01+ 7.27E+00±4.10E−01

50 2.12E+01±4.88E−01+ 3.14E+01±5.40E−01+ 1.98E+01±4.76E−01+ 5.21E+01±3.58E+01+ 9.08E+00±4.26E−01

F7

10 7.58E−11±7.21E−12+ 3.30E−12±1.01E−12+ 5.45E−10±8.12E−09+ 3.13E−14±8.99E−13− 6.25E−13±2.89E−12

30 4.23E−02±4.69E−02+ 1.25E−02±5.41E−02+ 8.69E−02±1.39E+00+ 5.20E−03±1.86E−02− 8.96E−03±6.12E−02

50 1.50E+06±2.47E+06+ 9.01E+07±3.29E+08+ 8.36E+06±1.13E+06+ 5.35E+05±4.27E+05− 9.54E+05±7.01E+05

F8

10 2.03E+01±7.83E−02≈ 2.03E+01±8.08E−02≈ 2.01E+01± 1.05E−01≈ 2.03E−01±6.31E−02≈ 2.01E+01±1.21E−01

30 2.08E+01±5.88E−02≈ 2.09E+00±4.70E−02≈ 2.01E+01±1.39 E−01≈ 2.09E+01±5.77E−02≈ 2.01E+01± 1.32E−01

50 2.11E+01±3.29E−02≈ 2.03E+01±7.75E−02≈ 2.00E+01±7.92 E−02≈ 2.11E+01±3.46E−02≈ 2.00E+01±6.17E−02

F9

10 6.60E+00±2.66E+00≈ 9.92E+00±2.50E+00≈ 5.01E+00±1.70E+00− 6.92E+00±3.23 E+00≈ 7.52E+00±3.23E+00

30 7.75E+01±8.06E+01≈ 8.02E+02±1.55E+01+ 4.76E+01±8.54E+00− 8.55E+01±8.19E+01≈ 6.19E+01±6.15 E+01

50 1.25E+02±1.91E+01− 2.56E+03±2.89E+02≈ 5.51E+02±1.86E+001≈ 7.78E+02±1.35E+02≈ 7.54E+02±1.97E+02

F10

10 4.91E+00±1.20E+00≈ 4.97E+00±4.81E−01≈ 6.51E−01±9.36E−01≈ 4.73E+00±6.63 E−01≈ 5.27E−01±7.21E−01

30 2.02E+01±4.92E+00≈ 4.51E+01±1.54E+00≈ 1.12E+01±5.97E+00≈ 6.54E+01±1.74E+00≈ 1.02E+01±3.35E+00

50 5.45E+01±2.03E+00≈ 5.07E+01±2.54E+00≈ 2.88E+01±5.25E+00≈ 5.35E+01±1.45E+00≈ 2.84E+01±2.83E+00

F11

10 3.32E+01±1.41E+02+ 1.10E+02±7.56E+01+ 5.64E+03±9.95E+03+ 4.78E+00±7.67E+00− 2.30E+01±3.81E+01

30 2.41E+03±3.42E+03+ 1.55E+04±6.34E+03+ 9.68E+03±1.51E+04+ 2.07E+04±3.05E+03+ 6.53E+02±4.27E+03

50 4.65E+04±1.53E+04+ 6.66E+04±1.71E+04+ 6.74E+04±1.09E+04+ 8.57E+04±1.04E+04+ 1.72E+04±1.06E+04

F12

10 4.49E−01±7.12E−02≈ 2.77E−01±1.00E−01≈ 3.06 E−01±4.97 E−02≈ 5.97E−01±9.70E−02≈ 2.86E−01±4.71E−02

30 2.06E+00±2.01E−01+ 1.53E+00±3.26E−01+ 1.46E+00±1.25E−01+ 3.64E+00±6.07E−01+ 7.15E−01±6.37E−02

50 3.96E+00±3.74E−01+ 3.09E+00±5.85E−01≈ 3.15E+00±1.32E−01≈ 1.22E+01±7.28E−01+ 2.97E+00±2.10E−01

F13

10 2.48E+00±4.97E−01+ 2.55E+00±6.58E−01+ 3.21E+00±2.54E−01+ 2.00E+00±8.25E−01+ 1.05E+01±5.40E−02

30 1.12E+01±5.78E−01+ 1.08E+01±3.58E−01+ 1.20E+01±2.12E−01+ 1.38E+01±5.41E−01+ 5.98E+00±5.47E−02

50 3.54E+01±5.23E−01+ 3.87E+01±2.89E−01+ 3.23E+01±3.69E−01≈ 3.89E+01±7.32E−01+ 3.21E+01±3.67E−02

F14

10 7.11E+00±2.58E−01+ 6.57E+00±2.54E−01+ 4.52E+00±3.42E−01+ 5.09E+00±2.99E−01+ 2.10E+00±2.51E−01

30 3.20E+01±2.14E−01+ 2.56E+01±6.24E−01+ 1.18E+01±5.02E−01+ 1.65E+01±8.95E−01+ 9.98E+00±4.23E−01

50 6.24E+01±5.38E−01+ 5.24E+01±9.10E−01+ 4.51E+01±2.35E−01+ 4.27E+01±1.20E+00+ 2.32E+01±4.23E−01

F15

10 2.10E+02±2.00E+01+ 2.98E+02±2.02E+01+ 2.58E+02±4.00E+01+ 3.68E+02±3.14E+01+ 2.02E+02±1.10E+01

30 2.82E+02±2.14E+01+ 3.39E+02±2.24E+01+ 3.01E+02±4.02E+01+ 4.12E+02±3.95E+01+ 2.63E+02±1.23E+01

50 3.25E+02±2.41E+01+ 3.87E+02±2.14E+01+ 3.67E+02±4.11E+01+ 4.58E+02±3.06E+01+ 2.88E+02±1.29E+01

F16

10 2.85E+02±7.01E+01+ 2.21E+02±3.02E+01+ 1.28E+02±2.13E+01≈ 1.52E+02±2.44E+01+ 1.24E+02±1.54E+01

30 3.20E+02±8.14E+01+ 2.41E+02±3.24E+01+ 1.65E+02±2.02E+01≈ 1.79E+02±2.95E+01+ 1.64E+02±1.23E+01

50 4.02E+02±6.33E+01+ 3.01E+02±3.51E+01+ 2.12E+02±2.23E+01≈ 2.24E+02±2.20E+01+ 2.11E+02±1.63E+01

F17

10 1.89E+02±3.02E+01+ 2.11E+02±5.89E+01+ 9.21E+01±2.47E+01− 8.96E+02±6.87E+01+ 1.65E+02±4.54E+01

30 2.20E+02±3.14E+01+ 2.56E+02±6.24E+01+ 1.02E+02±2.36E+01− 1.01E+03±8.95E+01+ 1.80E+02±4.23E+01

50 2.88E+02±3.45E+01+ 2.98E+02±6.54E+01+ 1.85E+02±2.46E+01− 1.77E+03±8.12E+01+ 1.96E+02±4.86E+01

h

+ 26 26 18 22

− 1 0 5 4

≈ 9 10 13 10
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Fig. 8 The convergence curve of F11

Fig. 9 The convergence curve of F12

Fig. 10 The convergence curve of F13

Fig. 11 The convergence curve of F14

Fig. 12 The convergence curve of F15

Fig. 13 The convergence curve of F16
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Fig. 14 The convergence curve of F17

methods on solving eight functions (F6, F8, F10, F12, F13,

F14, F15, F16), DEPSO-EPV outperforms the HCPSODE

on functions F9 and F17, and DEPSO performs better

than others algorithms on F7. Among the five algorithms,

CDEPSO cannot be significantly better than HCPSODE on

any test function. The outstanding performance of HCP-

SODE is due to the chaos map with greater Lyapunov index

used in HCPSODE which can help particle jump out of local

optimum, when the swarm is on stagnation, hence DE op-

erator can enhance the diversity of the swarm. The reason

for DEPSO-EPV′s excellent performance on some function

is due to its DE operator action on both cognitive and social

experience, which makes the algorithm have better balance

on exploitation and exploration.

HCPSODE is significantly better than PSO-DV,

CDEPSO, DEPSO-EPV and DEPSO on 8, 8, 6, and 7 test

functions, respectively. This may be because HCPSODE

can improve the global search ability by detecting the stag-

nation, and balance exploration and exploitation ability by

adjustment of inertia weight adaptively.

As to Wilcoxon rank sum test, the HCPSODE signifi-

cantly outperforms its peers with 26, 26, 18 and 22 out of

12 test instances on 10, 30 and 50 dimensions respectively.

Table 2 shows the best, worst, mean and standard de-

viation (Std.Dev) values in the CEC2011 test instances

for the HCPSODE, GA-MPC, DE-ACr, SAMODE. Except

for HCPSODE, all the values are obtained from the corre-

sponding literature.

From Table 2, we can see that the HCPSODE obtained

the best values in 8 of the 10 problems (T01, T02, 0T3,

T04, T05, T07, T10 and T13), while the GA-MPC, DE-

ACr, SAMODE obtained the best values in 6 (T01, T02,

T03, T04, T07, and T12), 1 (T06), 5 (T01, T02, T03, T04,

and T07), and 5 problems (T01, T02, T03, T04, and T06),

respectively.

3.3 Diversity analysis

Swarm diversity can be used to monitor the degree

of convergence or divergence and is closely linked to the

exploration-exploitation tradeoff. The diversity measure

used in this research is the average distance around the

swarm center which is defined as

div(S) =
1

|S|
S∑

i=1

√√√√ D∑
j=1

(Xij − Xj)2 (11)

where S denotes the swarm, |S| is the population size, D

is the dimensionality of the optimization problem, Xij is

the value of the j-th dimension of the i-th particle, and

Xj is the average value for dimension j over all particles.

Fig.15 illustrates the swarm diversity of the basic PSO and

HCPSODE algorithm on solving F6 with 30 dimensions.

Fig. 15 Diversity curve F6

It is clearly shown that the diversity of basic PSO de-

creases dramatically, and the diversity of HCPSODE de-

creases gradually which indicates that the HCPSODE can

maintain the diversity effectively and keep good balance

between exploration and exploitation.

4 Application of HCPSODE to ADRC

parameter optimization

In this section, the proposed HCPSODE algorithm is ap-

plied to parameter optimization of ADRC.

PID controller has been widely used in industrial con-

trol systems due to the simple structure and implementa-

tion simplicity. As an error-based feedback controller, the

control law is produced by linear combination of the error

between the set point and plant as well as its differentiation

and integration.

u (t) = Kpe (t) + Ki

∫ t

0

e (τ ) dτ + Kd
d

dt
e (t) . (12)

However, when the parameters of the control system

change in larger range or the control system is nonlinear,

or when the reference input signal is not differentiable or is

non-smooth, it is difficult to obtain ideal differential signal,

and the performance of PID control will degrade greatly,

to solve this problem exists in PID controller, a new non-

linear controller named ADRC was proposed by Han and



110 International Journal of Automation and Computing 15(1), February 2018

Wang[25, 26]. ADRC is a nonlinear controller, which is gen-

erally used for controlling a class of nonlinear uncertain sys-

tems and systems with large time-delay. ADRC combines

modern control theory with signal processing techniques,

and inherits the essence of PID controller. ADRC does not

depend on the model of the control and does not need to

measure the perturbation of the system. It is easy to imple-

ment decoupling control which has shown broad application

prospects[27−29]. However, there are several key parameters

in ADRC which need to be tuned before using it, and the

tuning process is heavily depends on the experience and

is time-consuming and tedious. The tuning of ADRC pa-

rameter has become a hot topic. The typical second-order

ADRC is schematically shown in Fig. 16, where w(t) is the

unknown disturbance. Note that ADRC is composed of

three parts: the tracking differentiator (TD), the expansion

of the state observer (ESO), and the nonlinear state error

feedback (NLSEF).

Fig. 16 The structure of ADRC

Table 2 Performance values achieved by HCPSODE and others three algorithms within 1.5 × 105 FEs

Function GA-MPC DE-ACr SAMODE HCPSODE

T01

Best 0.000 000E+00 7.209 3E−15 0.000 000E+00 0.000 000E+00

Worst 0.000 000E+00 1.175 7E+01 1.094 227 7E+01 0.000 000E+00

Mean 0.000 000E+00 8.7697E−01 1.212 025 6E+00 0.000 000E+00

Std.Dev 0.000 000E+00 3.043 9E+00 3.376 217 1E+00 0.000 000E+00

T02

Best −2.842 253E+01 −2.842 3E+01 −2.842 253E+01 −2.842 253E+01

Worst −2.711 301E+01 −2.644 37E+01 −2.610 048E+01 −2.761 562E+01

Mean −2.770 069E+01 −2.773 1E+01 −2.706 978E+01 −2.795 874E+01

Std.Dev 4.673 052E−01 4.903 5E−01 6.624 811E−01 3.872 351E−01

T03

Best 1.151 489E−05 1.151 5E−05 1.151 489E−05 1.151 489E−05

Worst 1.151 489E−05 1.151 5E−05 1.151 489E−05E 1.151 489E−05

Mean 1.151 489E−05 1.151 5E−05 1.151 489E−05 1.151 489E−05

Std.Dev 0.000 000E+00 0.00E+00 6.1087E−15 0.000 000E+00

T04

Best 1.377 076 2E+01 1.377 2E+01 1.377 076 2E+01 1.377 076 2E+01

Worst 1.432 911 3E+01 2.1002E+01 1.432 911 3E+01 1.586 324E+01

Mean 1.381 543 0E+01 1.733 9E+01 1.394 046 0E+01 1.412 474E+01

Std.Dev 1.546 004 5E−01 2.976 1E+00 2.502 223 1E−01 3.685 412E−01

T05

Best −3.684 537E+01 −3.684 5E+01 −3.684 393E+01 −3.702 594E+01

Worst −3.410 760E+01 −3.148 4E+01 −3.049 253E+01 −3.353 489E+01

Mean −3.503 883E+01 −3.472 0E+01 −3.359 474E+01 −3.638 954E+01

Std.Dev 8.329 248E−01 1.446 9E+00 1.575 135E+00 1.102 657E+00

T06

Best −2.906 612E+01 −3.684 5E+01 −2.916 612E+01 −2.918 123E+01

Worst −2.125 851E+01 −3.416 5E+01 −2.300 593E+01 −2.651 254E+01

Mean −2.748 811E+01 −3.503 3E+01 −2.763 470E+01 −2.824 871E+01

Std.Dev 1.782 137E+00 1.028 7E+00 1.923 527E+00 4.894 321E−01

T07

Best 5.000 000E−01 6.659 1E−01 5.000 000E−01 5.000 000E−01

Worst 9.334 272E−01 1.036 1E+00 9.943 334E−01 9.852 141E−01

Mean 7.484 090E−01 8.847 7E−01 8.166 238E−01 7.248 974E−01

Std.Dev 1.249 139E−01 1.057 1E−01 1.193 672E−01 1.354 785E−01

T10

Best −2.184 253 9E+01 −2.160 1E+01 −2.182 166 5E+01 −2.185 212 6E+01

Worst −2.147 568 4E+01 −1.094 0E+01 −2.141 583 7E+01 −2.156 287 4E+01

Mean −2.170 224 9E+01 −1.675 6E+01 −2.165 890 6E+01 −2.181 336 8E+01

Std.Dev 1.163 465 9E−01 4.043 7E+00 1.129 576 9E−01 1.084 596 2E−01

T12

Best 7.095 559 5E+00 1.181 4E+01 6.943 215 0E+00 6.960 568 2E+01

Worst 1.692 489 3E+01 1.798 1E+01 1.561 880 0E+01 1.665 874 1E+01

Mean 1.281 816 5E+01 1.536 0E+01 1.106 747 1E+01 1.1857452E+01

Std.Dev 3.241 342 8E+00 1.213 3E+00 2.652 277 9E+00 3.054 521 0E+00

T13

Best 8.398 688E+00 8.962 4E+00 8.610 634E+00 8.662 569E+00

Worst 1.081 018E+01 2.105 2E+01 1.662 200E+01 9.678 521E+00

Mean 9.359 342E+00 1.490 9E+01 1.099 524E+01 8.785 412E+00

Std.Dev 9.454 327E−01 2.763 4E+00 2.388 975E+00 5.478 521E−01
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4.1 TD

TD is a dynamic component. From its input signal v(t),

two output signals can be obtained, v1(t) and v2(t) are the

tracking signal and the differentiated signal of the input.

The discrete expression of output signals are as follows:

v1 (k + 1) = v1 (k) + Tv2 (k) (13)

v2 (k + 1) = v2 (k) + Tfhan (v1 (k) , v2 (k) , r, h0) (14)

where T is the sample time, r is the parameter to determine

the tracking speed, h0 is filter factor, fhan is a nonlinear

function and can be defined as

fhan =

{
−ra

d
, |a| ≤ d

−rsgn(a), a > d
(15)

where

d = rh0, d0 = dh0, y = v1 − v0 + h0v2

a0 =
√

d2 + 8r |y|

a =

⎧⎨
⎩

v2 +
y

h0
, |y| ≤ d0

v2 + sgn(y)
(a0 − d)

2
, |y| > d0.

(16)

The expression sgn() represents the signum function.

4.2 ESO

ESO is the core part integrated with the ADRC con-

troller. It adopts a nonlinear structure to estimate the state

of the system, the model uncertainty and the external dis-

turbance.

e (k + 1) = z1 (k) − y (k + 1)

z1 (k + 1) = z2 (k) + T [z2 (k) − β1e (k)]

z2 (k + 1) = z2 (k) + T [z3 (k) − β2fal (e, 0.5, δ) + b0u (k)]

z3 (k + 1) = z3 (k) − Tβ3fal (e, 0.25, δ) . (17)

In (17), parameters, β1, β2 and β3, are need to be tuned.

The nonlinear function fal() can be defined as

fal (e, α, δ) =

{ e

δ1−α
, |e| ≤ δ

|e|α sgn (e), |e| ≥ δ
(18)

where 0 < α < 1, δ < 0 .

4.3 NLSEF

NLSEF converts the linear combination of traditional

PID to the nonlinear combination, and obtains a nonlin-

ear PID controller to improve control performance. The

formula of the calculation can be regarded as a nonlinear

PD controller.

e1 (k + 1) = v1 (k + 1) − z1 (k + 1)

e2 (k + 1) = v2 (k + 1) − z2 (k + 1)

u0 (k + 1) = λ1fal (e1 (k + 1) , α1, δ) +

λ2fal (e2 (k + 1) , α2, δ)

u1 (k + 1) = u0 (k + 1) − z3 (k + 1)

b0
(19)

where λ1, λ2, α1, α2 and b0 are adjustable parameters.

ADRC does not rely on the accurate mathematical model

of the control system, and can achieve high control per-

formance only need the information of the input, system

output and the controller output.

As discussed above, there are many parameters in ADRC

need to be tuned, including r, h0 in TD, β1, β2, β3 in ESO,

λ1, λ2, α1, α2 and b0 in NLSEF. The tuning of ADRC pa-

rameters has some rules to follow. The parameters of TD

can be tuned alone because it is independent of ESO and

NLSEF. In ESO, β1, β2 are the estimations of the object

state variables, β3 is the estimation of the total system dis-

turbances which are compensated by NLSEF automatically.

Power parameter 0 ≤ αi ≤ 1, (i = 1, 2) is usually set as α1

= 1, α2 = 0.5. The estimation ability of ESO is determined

by β1, β2, β3. λ1, λ2 and b0 are the key parameters to deter-

mine the controller performance. The proposed algorithm

is employed to optimize the parameters of ADRC.

4.4 Fitness function and penalty strategy

The fitness function can affect the quality of optimal de-

sign schemes and the optimization process. The functional

integral of instantaneous error, such as integral of error

(IE), integral of squared error (ISE), integral time square

error (ITSE), integral of absolute value of error (IAE), and

integral time absolute error (ITAE) are generally used as

objective function to evaluate the control system perfor-

mance. Aforementioned performance criteria have their

own advantages and disadvantages. Optimized control pa-

rameters can yield an excellent response that will minimize

the performance criteria including the overshoot, rise time,

settling time, and steady-state error. To make the system

output and the actuator movement more stable, a new fit-

ness function combining ITSE with overshoot and steady

state error is defined as follows:

J =

∫ ∞

0

w1 |e(t)|2 tdt+w2u
2 (t) + w3 (Mp + ess) (20)

where e(t) is the instantaneous error between reference in-

put and system output, w1, w2, w3 are the adjustable

weight factors, u(t) is output of controller, Mp and ess is

the overshoot and the steady state error respectively.

The structure of the HCPSODE based ADRC controller

is illustrated in Fig. 17.

Fig. 17 The structure of HCPSODE-ADRC
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4.5 Simulation study

Two examples are used in the simulation to demonstrate

the effectiveness of the optimized ADRC. For compari-

son purpose, the HCPSODE, JADE[30], CMA-ES[31] and

APSO[32] are applied to these examples.

Example 1. Given a system with the following differ-

ence equation:

y (k + 1) = sin[y(k)] + u(k)(5 + cos[y(k)u(k)]). (21)

Example 2. A second-order system with time delay is

described in the following difference equation:

y (k + 2) = 0.2 sin(0.5(y(k) + y(k − 1)))+

0.2 sin(0.5(y(k) + y(k − 1)) + 2u (k) +

u (k − 1) +
4u(k) + u(k − 1)

1 + 0.2 cos(0.2(2y(k) + y(k − 1)))
. (22)

The reference signal to be tracked by system (21) and

(22) is step change.

The tracking performance of ADRC for (21) and (22)

optimized by the four methods is presented in Figs. 18 and

19, respectively. For the first example, it is clearly shown

that the tracking performance of ADRC optimized by HCP-

SODE is obviously better than APSO and CMA-ES. It took

about 20, 22, 45, 47 generations for HCPSODE, JADE,

APSO and CMA-ES to reach steady state respectively, and

among the four optimized ADRC, there is only a slight over-

shoot existing in APSO. As for the second example, there

exist slight overshoot and small oscillation in APSO opti-

mized ADRC, and the HCPSODE optimized ADRC took

least generations to reach steady state followed by CMA-

ES, JADE, and APSO.

Fig. 18 Tracking performance of Example 1

Fig. 19 Tracking performance of Example 2

5 Conclusions and future work

In this paper, a hybrid algorithm, incorporating PSO, DE

and chaotic map, to solve numerical function and ADRC

controller optimization is proposed. A novel nonlinear

strategy for decreasing inertia weights is adopted to bal-

ance the abilities of exploration and exploitation of the pro-

posed algorithm. To maintain the diversity of particles in

the late evolution period and avoid the prematurity, a DE

operator is used to help particles jump out of stagnation.

The proposed algorithm utilizes a chaotic map to improve

global convergence and escape from local optimum. The

results obtained from twelve benchmark functions demon-

strate the superiority of the proposed algorithm to five oth-

ers evolution algorithms in terms of solution accuracy and

convergence speed. In addition, the proposed algorithm

is applied to solve the parameter optimization problem of

ADRC. The evaluation results indicate its potential effec-

tiveness to control complex discrete-time nonlinear systems

with time delays.

In the field of optimization, hybridization is a direction

worthy of further study as it is one of the most efficient

strategies to improve the performance of many optimizers.

Our future work will focus on several issues: the first is

understanding how different hybrid methods improve the

performance of DE and PSO. The second is expanding our

method to solve more real-world problems; last but not the

least, we will apply the proposed optimized ADRC con-

troller to replace PID controller to drive permanent magnet

synchronous motor (PMSM).

References

[1] R. C. Eberhart, J. Kennedy. A new optimizer using parti-
cle swarm theory. In Proceedings of the 6th International
Symposium on Micro Machine and Human Science, IEEE,
Nagoya, Japan, pp. 39–43, 1995.

[2] J. Kennedy, R. C. Eberhart. Particle swarm optimization.
In Proceedings of IEEE International Conference on Neural
Network, IEEE, Perth, Australia, pp. 1942–1948, 1995.



G. H. Lin et al. / Hybrid Particle Swarm Optimization with Differential Evolution for · · · 113

[3] D. M. Wonohadidjojo, G. Kothapalli, M. Y. Hassan. Po-
sition control of electro-hydraulic actuator system using
fuzzy logic controller optimized by particle swarm optimiza-
tion. International Journal of Automation and Computing,
vol. 10, no. 3, pp. 181–193, 2013.

[4] K. Ishaque, Z. Salam, M. Amjad, S. Mekhilef. An improved
particle swarm optimization (PSO) - Based MPPT for PV
with reduced steady-state oscillation. IEEE Transactions on
Power Electronics, vol. 27, no. 8, pp. 3627–3638, 2012.

[5] N. Talbi, K. Belarbi. Fuzzy Takagi Sugeno system optimiza-
tion using hybrid particle swarm optimization and Tabu
search learning algorithm. International Journal of Tomog-
raphy and Simulation, vol. 22, no. 1, pp. 4–16, 2013.

[6] B. Xin, J. Chen, J. Zhang, H. Fang, Z. H. Peng. Hybridiz-
ing differential evolution and particle swarm optimization to
design powerful optimizers: A review and taxonomy. IEEE
Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews, vol. 42, no. 5, pp. 744–767, 2012.

[7] R. Storn, K. Price. Differential evolution – A simple and
efficient heuristic for global optimization over continu-
ous spaces. Journal of Global Optimization, vol. 11, no. 4,
pp. 341–359, 1997.

[8] V. Ramesh, T. Jayabarathi, S. Asthana, S. Mital, S. Basu.
Combined hybrid differential particle swarm optimization
approach for economic dispatch problems. Electric Power
Components and Systems, vol. 38, no. 5, pp. 545–557, 2010.

[9] S. Das, A. Konar, U. K. Chakraborty. Improving particle
swarm optimization with differentially perturbed velocity.
In Proceedings of the 7th Annual Conference on Genetic
and Evolutionary Computation, ACM, New York, USA,
pp. 177–184, 2005.

[10] P. Kim, J. Lee. An integrated method of particle swarm op-
timization and differential evolution. Journal of Mechanical
Science and Technology, vol. 23, no. 2, pp. 426–434, 2009.

[11] H. M. Elragal, M. A. Mangoud, M. T. Alsharaa. Hybrid
differential evolution and enhanced particle swarm optimi-
sation technique for design of reconfigurable phased antenna
arrays. IET Microwaves, Antennas and Propagation, vol. 5,
no. 11, pp. 1280–1287, 2011.

[12] D. Levy. Chaos theory and strategy: Theory, application,
and managerial implications. Strategic Management Jour-
nal, vol. 15, no. S2, pp. 167–178, 1994.

[13] L. dos Santos Coelho, B. M. Herrera. Fuzzy identification
based on a chaotic particle swarm optimization approach
applied to a nonlinear yo-yo motion system. IEEE Transac-
tions on Industrial Electronics, vol. 54, no. 6, pp. 3234–3245,
2007.

[14] M. Clerc, J. Kennedy. The particle swarm: Explosion,
stability, and convergence in a multidimensional complex
space. IEEE Transactions on Evolutionary Computation,
vol. 6, no. 1, pp. 58–73, 2002.

[15] I. C. Trelea. The particle swarm optimization algorithm:
Convergence analysis and parameter selection. Information
Processing Letters, vol. 85, no. 6, pp. 317–325, 2003.

[16] C. He, D. He, L. G. Jiang, H. W. Zhu, G. R. Hu. A chaotic
map with infinite collapses. In Proceedings of TENCON
2000, IEEE, Kuala Lumpur, Malaysia, pp. 95–99, 2000.

[17] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. P.
Chen, A. Auger, S. Tiwari. Problem Definitions and Eval-
uation Criteria for the CEC 2005 Special Session on Real-
parameter Optimization, Technical Report, Nanyang Tech-
nological University, Singapore, 2005.

[18] S. Das, P. N. Suganthan. Problem definitions and evaluation
criteria for CEC 2011 competition on testing evolutionary
algorithms on real world optimization problems, Technical
Report, Jadavpur University, Nanyang Technological Uni-
versity, Kolkata, 2010.

[19] Y. Tan, G. Z. Tan, S. G. Deng. Hybrid particle swarm opti-
mization with differential evolution and chaotic local search
to solve reliability-redundancy allocation problems. Journal
of Central South University, vol. 20, no. 6, pp. 1572–1581,
2013.

[20] M. G. Epitropakis, V. P. Plagianakos, M. N. Vrahatis.
Evolving cognitive and social experience in particle swarm
optimization through differential evolution. In Proceedings
of IEEE Congress on Evolutionary Computation, IEEE,
Barcelona, Spain, pp. 1–8, 2010.

[21] W. J. Zhang, X. F. Xie. DEPSO: Hybrid particle swarm
with differential evolution operator. In Proceedings of IEEE
International Conference on Systems, Man and Cybernet-
ics, IEEE, Washington DC, USA, pp. 3816–3821, 2003.

[22] S. M. Elsayed, R. A. Sarker, D. L. Essam. GA with a new
multi-parent crossover for solving IEEE-CEC 2011 com-
petition problems. In Proceedings of 2011 IEEE Congress
on Evolutionary Computation, IEEE, USA, pp. 1034–1040,
2011.

[23] G. Reynoso-Meza, J. Sanchis, X. Blasco, J. M. Herrero.
Hybrid DE algorithm with adaptive crossover operator for
solving real-world numerical optimization problems. In Pro-
ceedings of 2011 IEEE Congress on Evolutionary Compu-
tation, IEEE, New Orleans, USA, pp. 1551–1556, 2011.

[24] S. M. Elsayed, R. A. Sarker, D. L. Essam. Differential evo-
lution with multiple strategies for solving CEC2011 real-
world numerical optimization problems. In Proceedings of
2011 IEEE Congress on Evolutionary Computation, IEEE,
New Orleans, USA, pp. 1041–1048, 2011.



114 International Journal of Automation and Computing 15(1), February 2018

[25] J. Q. Han. Auto-disturbances-rejection controller and its
applications. Control and Decision, vol. 13, no. 1, pp. 19–23,
1998. (in Chinese)

[26] J. Q. Han, W. Wang. Nonlinear tracking-differentiator.
Journal of Systems Science and Mathematical Sciences,
vol. 14, no. 2, pp. 177–183, 1994. (in Chinese)

[27] K. Erenturk. Fractional-order PIλDμ and active distur-
bance rejection control of nonlinear two-mass drive system.
IEEE Transactions on Industrial Electronics, vol. 60, no. 9,
pp. 3806–3813, 2013.

[28] M. Pizzocaro, D. Calonico, C. Calosso, C. Clivati, G. A.
Costanzo, F. Levi, A. Mura. Active disturbance rejection
control of temperature for ultrastable optical cavities. IEEE
Transactions on Ultrasonics, Ferroelectrics and Frequency
Control, vol. 60, no. 2, pp. 273–280, 2013.

[29] J. Q. Pu, R. Y. Yuan, X. M. Tan, J. Q. Yi. An inte-
grated approach to hypersonic entry attitude control. In-
ternational Journal of Automation and Computing, vol. 11,
no. 1, pp. 39–50, 2014.

[30] J. Q. Zhang, A. C. Sanderson. JADE: Adaptive differential
evolution with optional external archive. IEEE Transactions
on Evolutionary Computation, vol. 13, no. 5, pp. 945–958,
2009.

[31] N. Hansen, A. Ostermeier. Completely derandomized self-
adaptation in evolution strategies. Evolutionary Computa-
tion, vol. 9, no. 2, pp. 159–195, 2001.

[32] Z. H. Zhan, J. Zhang, Y. Li, H. S. H. Chung. Adaptive par-
ticle swarm optimization. IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics, vol. 39, no. 6,
pp. 1362–1381, 2009.

Guo-Han Lin received the B. Sc. de-
gree in automation from Hunan University,
Changsha, China in 1996, the M. Sc. de-
gree in control theory and control engineer-
ing from Hunan University, China in 2005,
then, he joined the School of Hunan Insti-
tute of Engineering. He is currently Ph. D.
degree candidate in control science and en-
gineering, Hunan University, China.

His research interests include evolutionary computation tech-
niques, electric machine drives, power electronics, and intelligent
control theory.

E-mail: lgh@hnu.edu.cn (Corresponding author)
ORCID iD: 0000-0001-5014-3374

Jing Zhang received his B. Sc., M. Sc.
and Ph. D. degrees in control theory and
control engineering from Hunan University,
China in 1982, 1984 and 1997 respectively.
He is currently with the College of Elec-
trical and Information Engineering, Hunan
University, China. He has published more
than 100 papers in journals and confer-
ences. He was a recipient of Second Prize

for Chinese National Science and Technology Progress, China.
His research interests include optimal control, fuzzy control,

and intelligent control of rotary kiln.
E-mail: zhangj@hnu.edu.cn

Zhao-Hua Liu received his M. Sc. de-
gree in computer science and technology,
and the Ph. D. degree in control science and
engineering from Hunan University, China,
in 2010 and 2012, respectively. Currently,
he is with the School of Information and
Electrical Engineering, Hunan University of
Science and Technology, China.

His research interests include evolution-
ary computation techniques, intelligent control, computer control
technology, parallel computing, and parameter identification of
the permanent-magnet synchronous motor.

E-mail: zhaohualiu2009@hotmail.com


