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Abstract: The paper presents a robust parallel distributed compensation (PDC) fuzzy controller for a nonlinear and certain system

in continuous time described by the Takagi-Sugeno (T-S) fuzzy model. This controller is based on a new type of time-varying fuzzy

sets (TVFS). These fuzzy sets are characterized by displacement of the kernels to the right or left of the universe of discourse, and they

are directed by a well-defined criterion. In this work, we only focused on the movement of midpoint of the universe. The movements

of this midpoint are optimized by particle swarm optimization (PSO) approach.
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1 Introduction

The interest in takagi-sugeno (T-S) model[1, 2] is due to

the fact that the stability and performance characteristics of

the system can be analyzed using a Lyapunov function ap-

proach. It achieved great success in its application to many

systems in real world[3−5]. The so-called parallel distributed

compensation (PDC)[2, 6, 7] utilizes a nonlinear state feed-

back controller which mirrors the structure of associated

T-S model. The stability analysis is based on the quadratic

Lyapunov function[7,8], which is easy to implement and can

be expressed as a convex optimization problem in linear

matrix inequality (LMI) formalism[7−11] .

Fuzzy controller′s design depends mainly on the rules

based of fuzzy sets and membership functions, which con-

tain the linguistic elements who characterize the functioning

of the industrial process. In reality, we cannot exactly eval-

uate the length of an element of fuzzy sets. For example,

temperature′s linguistic variables are “Low”, “Medium”

and “High”. These linguistics values of fuzzy sets do not

have a well-defined numeric range at all the time and they

also depend on the process. In general, we approximate the

linguistics values of fuzzy sets by a proper numeric range,

where the membership functions are fixed during the com-

putation time called fixed fuzzy sets (FFS). Conventionally,

this type of fuzzy sets is known as type-1 fuzzy sets. The

type-2 fuzzy set is a set where we also have uncertainty on

the membership function[12, 13].

In context of the self organizing fuzzy control

(SOFC)[14−25], this work is an extension of [22, 23] which

were interested in membership functions by proposing that

the ranges of linguistics values of the fuzzy sets vary during
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the computation time, called the time-varying fuzzy sets

(TVFS). In general, movements of all support points are

performed in both directions, i.e., left or right and with

variable distances. Our approach is to only adjust the mid-

point of the universe of FFS by a function depending on the

error. The displacement of the midpoint is defined using a

temporal function and is directed to both right and left sides

of the universe by the position of the premise variable. All

other support points of the fuzzy sets are shifted by the

same function and direction except that the two extreme

support points are fixed for all time.

Salim et al.[22, 23] deal with identifying the parameters of

TVFS method. Rererence [22] discusses an offline identifi-

cation based on recursive least squares (RLS), where the pa-

rameters are fixed during the execution time, reference [23]

is an online identification based on an adaptive approach,

where the parameters vary in real-time. In this paper, we

propose a new online identification based on optimization

using particle swarm optimization (PSO) approach.

By applying this TVFS for designing a PDC fuzzy con-

troller for nonlinear system, we use a decay rate controller

and relaxed stability conditions[26−28] . A sample system

(inverted pendulum) is given to show the robustness of the

PDC fuzzy controller based on this approach.

The paper is organized as follow. The T-S fuzzy model

and stability using Lyapunov approach and PDC fuzzy con-

troller are recalled in Section 2. Section 3 discusses the

time-varying fuzzy sets. Section 4 presents the design of

the algorithm. A simulation example is provided to show

the effectiveness of this approach in Section 5. Finally, con-

clusions are given in Section 6.
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2 Fundamentals

2.1 T-S fuzzy model

Consider a nonlinear system described by the T-S fuzzy

model[1,2]:

Plant rule i : IF z1(t) is Mi1, · · · , and zp(t) is Mip, THEN{
ẋ(t) = Aix(t) + Biu(t)

y(t) = Cix(t), i = 1, · · · , r
(1)

where Mij is the fuzzy set, and r is the number of IF-

THEN rules, z(t) = [z1(t), z2(t), · · · , zp(t)] are the premise

variables, Ai ∈ Rn×n, Bi ∈ Rn×m and Ci ∈ Rn×1 are

system matrices where m ≤ n, x ∈ Rn is the state, u ∈ Rm

is the control constrained as

‖ u(t) ‖2< ϕ. (2)

The output y(t) is constrained as

‖ y(t) ‖2< ρ. (3)

The considered fuzzy model can be written as

x(t) =

n∑
i=1

wi(Aix(t) + Biu(t))

n∑
i=1

wi(t)
(4)

where wi is defined as

wi(z(t)) =

r∏
j=1

Mij(zj(t)) (5)

Mij is membership function of the j-th fuzzy set in the i-th

rule. Let us define

hi(z(t)) =
wi(z(t))

r∑
i=1

wi(z(t))
(6)

⎧⎨
⎩

r∑
i=1

(z(t)) = 1

hi(z(t)) ≥ 0, i = 1, · · · , r
(7)

for every input x(t) and u(t), the global output is obtained

by ⎧⎪⎨
⎪⎩

ẋ(t) =
r∑

i=1

hi(z(t)){Aix(t) + Biu(t)}

y(t) =
r∑

i=1

hi(z(t)){Cix(t)}, i = 1, · · · , r
(8)

where matrices Ai and Bi are constants of appropriate size

and satisfy the assumption that: each pair (Ai, Bi) is sta-

bilizable.

2.2 Parallel distributed compensation
controller

To stabilize the system represented by (6), we use a PDC

controller defined by[2,6, 7]. Control rule i: IF z1(t) is Mi1

and , · · · , and zp(t) is Mip THEN

u(t) = −Kix(t) i = 1, · · · , r (9)

where Ki is the controller stabilizing the i-th subsystem.

The global control will be given by

u(t) = −

r∑
i=1

wi(z(t))Ki.x(t)

r∑
i=1

wi(z(t))
=

−
r∑

i=1

hi(z(t))Kix(t), i = 1, · · · , r. (10)

2.3 Quadratic stability via Lyapunov ap-
proach

For guaranteeing the synthesizable fuzzy controller sta-

bility, we use the theorems giving the sufficient condi-

tions of Lyapunov quadratic stability which exploits LMI

formalism[29−32] .

3 Time-varying fuzzy sets

3.1 Definition and presentation of the
TVFS

On the fuzzy sets form, we have no confusion to give

the two extreme numeric ranges of their corresponding lin-

guistics values. Around the midpoint of the universe, there

is always a wide margin for intersection of linguistics val-

ues where we cannot determine their exact numeric ranges

fixed throughout the computation time. We propose that

the ranges of the fuzzy sets vary with time on the universe

[Z, Z ], called time-varying fuzzy sets.

These linguistics ranges are inversely proportional to

membership grades (Figs. 1−3) which are directly propor-

tional to the control law, defined by the PDC fuzzy con-

troller. Let us define the error e(t) as

e(t) = x(t) − xd(t) (11)

where x(t) is the current system state and xd(t) is the de-

sired system state.

If e(t) is large, then one needs more control effort to

decrease when approaching the desired state by an adequate

acceleration. For example, consider the fuzzy set Low or

High, if the range of one decreases by one step, the other

range increases by the same step.

To carry out this objective, we propose to adjust the mid-

point of the universe defined by α in Fig. 1. The displace-

ments of this midpoint are characterized by a continuous

function depending on the error[23], where

α(t) =
f(e(t))

α(t)
∈ [α , α] ⊂ [

Z , Z
]
. (12)

Fig. 3 presents a case where α(t) is displaced to the

left side, then the membership grade of the z2(t) premise

variable is considerably increased, while those of the z1(t)

premise variable is slightly decreased.

Through Fig. 1, if the midpoint is shifted towards the left

{α(t0), (α(t1), · · · , (α(ti)}, the decrease of the left range,

it causes a higher membership grades on the left side
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{μz1(t0) < μz1(t1) < · · · < μz1(ti)} and the increase of

these membership grades generates an increase of the con-

trol effort, see (10).

Fig. 1 Membership functions with the time-varying midpoint

(2D and 3D)(μ: membership grade, Z: premise variable, RR(t):

right range, RL(t): left range, α(t): midpoint)

Fig. 2 Area of membership functions covered by the time-

varying midpoint: called Footprint of Shifting (FOS)

Fig. 3 Variation of the membership grades generated by the

time-varying midpoint

3.2 Proof relation between the control and
the grades membership function

From the (5) that

hi =
wi

r∑
i=1

wi
=

wi

w1 + w2 + · · · + wi + · · · + wr
≥ 0 (13)

W = w1 + w2 + · · · + wi−1 + wi+1 · · · + wr > 0. (14)

For wi
′, we have

hi
′ =

wi
′

W + wi
′ . (15)

Then,

hi
′ − hi =

wi
′

W + wi
′ −

wi

W + wi
=

W

(W + wi) × (W + wi
′)

× (wi
′ − wi). (16)

So,

if wi
′ − wi > 0, then

hi
′ − hi > 0. (17)

So increase of wi generates an increase in hi, and from

(10), the increase of hi generates an increase in the control

effort u(t).

4 Algorithm design for TVFS

We propose five steps

1) The design (inclusion) of α(t) midpoint into the algo-

rithm of fuzzy system

2) The functions defining the α(t) displacements

3) The direction criterion of the displacement of the α(t)

midpoint

4) The effect of the α(t) function on the stability

5) Identification of the parameters of α(t).

We explain this algorithm using triangular membership

functions and PDC fuzzy controller.

4.1 Design of fuzzy system by including
α(t) midpoint into the algorithm

Let us consider triangular membership functions in

Fig. 4. The premise variable zi(t) is given by

zi(t) = M1i(zi(t)) × zi + M2i(zi(t)) × zi (18)

[zi, zi] represent minimum and maximum of zi for x(t) ∈[x,

x].

M1i and M2i are the membership grades of zi(t) with α

fixed, as shown in Fig. 4.

M1i(zi(t)) =
zi(t) − zi

zi − zi

M2i(zi(t)) =
zi − zi(t)

zi − zi

. (19)

The value of α is fixed as the midpoint of the universe.

Fig. 4 Membership functions with α fixed

And we propose to calculate the premise variable zi(t)

by

zi(t) = M1i(zi(t))α(t) + M2i(zi(t))zi+

M3i(zi(t))zi + M4i(zi(t))α(t) (20)
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where

α(t) ∈ [α , α] ⊂ [
Z , Z

]
(21)

M1i(zi(t)) =
1

2
× zi(t) − zi

α(t) − zi

M2i(zi(t)) =
1

2
× α(t) − zi(t)

α(t) − zi

M3i(zi(t)) =
1

2
× zi(t) − α(t)

ziα(t)

M4i(zi(t)) =
1

2
× zi − zi(t)

ziα(t)
(22)

M1i, M2i, M3i and M4i are the membership grades of zi(t)

with α time-varying.

4.2 Functions defining the ααα(((ttt))) displace-
ments

Let αR(t) be the right displacement of the midpoint on

the universe, ensured by a function depending on the error,

as shown in Fig. 5.

αR(t) = fR(e(t)) = θ1R ×
(
1 − e−θ2R×|e(t)|

)
(23)

where θ1R and θ2R are the maximum and the growth rate

of αR(t), respectively.

αL(t) is the left displacement of the midpoint on the uni-

verse, ensured by

αL(t) = fL(e(t)) = −θ1L ×
(
1 − e−θ2L×|e(t)|

)
(24)

where −θ1L and θ2L are the minimum and the decay rate

of the αL(t), respectively.

4.3 Direction criterion displacement of the
ααα(((ttt))) midpoint

The direction criterion depends on the relation between

the membership grades and the control law based on the

error distance e(t), see Section 3.1. In this note, we use a

PDC controller and we based it on the relationship (10).

The displacement of the α(t) midpoint to both left or right

is directed by the position of the premise variable Z(t),

i.e., if the premise variable is set to the left of the midpoint,

then α(t) must approach to the minimum α by the function

defined in relationship (24). If the premise variable is set to

the right of the midpoint, then α(t) must approach to the

maximum α by the function defined in relationship (24).

The relationship (21) is always checked.

So, we propose that the displacements α(t) will follow

the Z(t) premise variable by an acceleration determined by

the output reference of the Mamdani fuzzy model, shown

in Figs. 6 and 7. The switch function between the right and

the left displacements is illustrated in Fig. 5, and is given

by this sub-program:

α(t) < z(t + 1) then α(t + 1) = αR(t + 1)

else α(t + 1) = αL(t + 1). (25)

Fig. 5 Direction of the displacement of the time-varying mid-

point

4.4 Effect of α(t) functions on the stability

It is simple to demonstrate that (18) and (20) are ex-

actly equal for any value of α(t), by substituting respec-

tively equation (19) in (18) and (22) in (20). This implies

that the subsystems [Ai Bi; Ci 0] of T-S[2, 7] do not change

as the value of α(t), and also the criteria of the stability

(Stability theorems[29−32]) do not change.

4.5 Identification of α(t) parameters

In this part, we use an online identification of α(t) func-

tion shown by Fig. 6 based on the traditional model refer-

ence adaptive control (MRAC).

Fig. 6 Closed loop system with time-varying fuzzy sets

where

Ym(t): The output of the Mamdani model reference

e(t): Error

�e(t): Change in error

ea(t): Adaptive error

r(t): Reference

u(t): Control law

αL(t): The left displacement function of the midpoint
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αR(t): The right displacement function of the midpoint

α(t): The general displacement function of the midpoint

[z1(t), · · · , zn(t)]: Premise variable vector

[α1(t), · · · , αi(t)]: The vector of the midpoint function

y(t): Output of the system.

4.5.1 Reference model

The reference model is defined by the output Ym(t) of

Mamdani fuzzy system, which represents the acceleration

of the midpoint displacements presented in Fig. 7.

Fig. 7 Representation of the reference model

4.5.2 Rule-base of ααα(((ttt))) displacements

As an example we give in Table 1 the rule-base of the

system.

Table 1 Rule base

e(t)/�e(t) Small Medium Big

�S Little Moderate Great

�M Little Moderate Great

�B Moderate Great Great

4.5.3 Approach of the particle swarm optimization

The PSO method is a member of wide category of swarm

intelligence methods for solving the optimization problems,

which is a population based search algorithm where each

individual is referred to as particle and represents a candi-

date solution. Each particle in PSO flies through the search

space with an adaptable velocity that is dynamically mod-

ified according to its own flying experience and also to the

flying experience of the other particles. In PSO, all parti-

cles strive to improve themselves by imitating traits of their

successful peers. Further, each particle has a memory and

hence it is capable of remembering the best position in the

search space ever visited by it. The position corresponding

to the best fitness of one particle is known as pbest and

the overall best out of all the particles in the population is

called gbest[33, 34].

The velocity and the position of each particle can be cal-

culated using the current velocity and the distances from

the pbestj,g to gbestg as shown in the following formulas:

v
(ite+1)
j,g = Iw × v

(ite)
j,g + c1 × r1 × (pbestj,g − x

(ite)
j,g )+

c2 × r2 × (gbestg − x
(ite)
j,g ) (26)

x
(ite+1)
j,g = x

(ite)
j,g + v

(ite+1)
j,g (27)

where j = 1, 2, · · · , n, g = 1, 2, · · · , m, n is the number

of particles in the swarm, m is the number of components

for the vector vj and xj , ite is the number of iterations

(generations), v
(ite)
j,g is the g-th component of the velocity of

the particle j at iteration t, Iw is the inertia weight factor,

c1 and c2 are the cognitive and social acceleration factors,

r1 and r2 are the random numbers uniformly distributed in

the range [0, 1], x
(ite)
j,g is the g-th component of the position

of particle at iteration t, pbestj is the pbest of particle j ,

gbestg is the gbest of group.

The j-th particle in the swarm is represented by a

d-dimensional vector xj=(xj,1, xj,2,· · · ,xj,d) and its rate

of position change (velocity) is denoted by another d-

dimensional vector vj=(vj,1, vj,2,· · · ,vj,d). The best

previous position of the j-th particle is represented as

pbestj=(pbestj,1, pbestj,2, · · · ,pbestj,d). The index of best

particle among all of the particles in the swarm is repre-

sented by the gbestg. In PSO, each particle moves in the

search space with a velocity according to its own previous

best solution and its group′s previous best solution. The

velocity update in a PSO consists of three parts, namely

momentum, cognitive and social parts (27). The balance

among these parts determines the performance of a PSO

algorithm. The parameters c1 and c2 determine the rel-

ative pull of pbest and gbest and the parameters r1 and

r2 help in stochastically varying these pulls. In the above

equations, superscripts denote the iteration number. Fig. 8

shows the velocity and the position in two-dimensional pa-

rameter space.

Fig. 8 Description of velocity and position updates in PSO for

2-dimensional parameter space

Based on the closed loop system with TVFS illustrated

in Fig. 6, we have

ea(t) = α(t) − Ym(t). (28)

The general form of α(t) midpoint function is given by

α(t) = θ1(1 − e−θ2.e(t)). (29)

So, the objective of using the PSO approach is to find the

parameters θ1(t) and θ2(t) such that the objective function

J is optimized which is defined by

J = min
(
e2

a(t) + e2(t)
)

=

min
[
(α(t) − Ym(t))2 + e2(t)

]
=

min

[(
θ1(1 − e−θ2e(t)) − Ym(t)

)2

+

(x(t) − xd(t))
2] . (30)
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5 Simulation example

To illustrate the idea of this note, we consider the prob-

lem of an inverted pendulum on a cart[2]:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1(t) = x2(t)

x2(t) =
gsin(x1(t)) − a × m × x2

2(t) × sin(2x1(t))
2

− h(t)
4l
3
− a × m × lcos2(x1(t))

h(t) = a × cos(x1(t)) × u(t).

(31)

We approximate the system by the following two-rule

fuzzy model:

A1 =

[
0 1
g

4lm − aml
0

]

B1 =

⎡
⎣ 0

a
4lm
3

− a × m × l

⎤
⎦

C1 =
[
1 0

]

A2 =

⎡
⎣ 0 1

2 × g

π(4 × l
3
− a × m × lγ2)

0

⎤
⎦

B2 =

⎡
⎣ 0

−aγ

4 × l
3
− a × m × l × γ2

⎤
⎦

C2 =
[
1 0

]

x(0) =

[π

4
0

]
.

The membership functions are shown in Fig. 4, where
π
2
≤ x1(t) ≤ π

2
.

The rule-base of the reference Mamdani model is in

Table 1.

We can define the parameters of the membership function

of the error and the change in error as

Se = 1%× | x1(0) |= 0.5◦

Me = 3%× | x1(0) |= 1.5◦

Be = 6%× | x1(0) |= 3.0◦

S�e = 1% × Se

M�e = 3% × Me

B�e = 6% × Be.

Acceleration of the displacement is dependedent on the

universe, we can take the maximum of the range: li = 0,

mo = 0.785, gr = 1.57.

For PSO simulation parameters, we can use n=49 as the

number of particles in swarm, ite=100 as the number of

iterations, c1 = c2 = 2, r1 = r2 = random[0, 1], Iw =

wmax× (wmax−wmin)
itermax

, and iter is the inertia weight factor[33] ,

θ1 = 1, θ2 = 0, v1 = 1, v2 = 0, initial parameters. The

responses obtained are as

Fig. 9 x1(t) response (—TVFS, −− FFS)

Fig. 10 x2 (t) response (—TVFS, −− FFS)

5.1 Comments and comparison

The fuzzy system with the VFS approach gives a good

stability and the dynamic specifications are better than the

system with the FFS. Our results are improved compared

to the results found in [2, 20], particularly the settling time

in [14, 20]. We can see also that TVFS completely reduces

oscillations but the control effort is relatively high compared

to the FFS. We can observe that the effect of α(t) function

is in the transient but later is got stabilized towards the final

stability midpoint, which depends on the reference system,

as shown in Fig. 7.

In the end, we define the footprint of shifting (FOS),

which represents the area covered by the variation of fuzzy

sets, which itself is an interval-valued fuzzy set (Fig. 13).

The initial α(0) is set to the midpoint of the universe,

through the response of the Fig. 12, we can compute the

universe of α(t) as

FOS = α+ | α |= 1.32 + 1.17 = 2.49 ∈ [−π

2
,
π

2
]. (32)
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Fig. 11 Control effort response (—TVFS,−− FFS)

Fig. 12 α (t) response (−−) and Ym reference (—)

By the PSO approach, we get a large FOS compared with

the adaptive approach[23], provided that control effort and

time of application is enough. This is explained by the good

results, especially the settling time.

The FOS of the PSO approach is illustrated by Fig. 13

which is generated by the program.

6 Conclusions

The presented TVFS approach is based only on the dis-

tance of the error. The role of the α(t) midpoint function

is to ensure an adequate effort and time required to apply

this effort. Generally, it requires a high effort which accu-

rately reflects that the time-varying fuzzy sets have given

the necessary power and enough time to the controller for

stabilizing the system.

In addition, the TVFS approach is built on the rule-base

that defines the displacement functions of the midpoint,

where it is very important to give a high or low control

amplitude, and on the criterion that defines the direc-

tion of shifting, that is to increase (decrease) the member-

ship grades that generate the increasing (decreasing respec-

tively) the control effort. The displacement functions of the

midpoint can cause oscillations of the control (cattering).

For reducing these oscillations, we focus on a well defined

rule-base (that varies quickly or slowly) and on the choice

of the direction criterion. Through the TVFS approach, the

ranges of the linguistic values of the fuzzy sets change with

time according to the variation of the linguistic values of

the error.

Fig. 13 FOS of VFS membership function

Finally, we can summarize this conclusion as Table 2.

Table 2 Comparison between three fuzzy sets

Type of fuzzy sets Vertical interval Horizontal interval

FOU FOS

Type-1 fuzzy set FOU = 0, ∀t FOS = 0, ∀t

Type-2 fuzzy set FOU �= 0, ∀t FOS = 0, ∀t

VFS FOU �= 0, ∀t FOS �= 0, ∀t

Appendix

Theorem 1.

Decay rate controller design using relaxed stability con-

ditions: The condition that V̇ (x) + 2βV (x(t)) ≤ 0 for all

trajectories is equivalent to[28−31]

∃P > 0,∃Q > 0 GT
iiP + PGii + (s − 1)Q + 2βP < 0, β > 0

(A1)(
Gij + Gji

2

)T

P + P
Gij + Gji

2
− Q + 2βP ≤ 0 (A2)

i < j, s.t. hi ∩ hj 
= φ, where 1 < s < r.

We can find the Ki controller by this optimization prob-

lem:

max
(X,Z,Y1,··· ,Yr)

β

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−XAT
i − AiX + BiYi + Y T

i BT
i − (s − 1)Z−

2βX > 0, i = 1, 2, · · · , r

−XAT
i − AiX − XAT

j − AjX + BiYj+

Y T
j BT

i + BjYi + Y T
i BT

j + 2Z − 4βX > 0

X > 0, Y ≥ 0, i < j, s.t. hi ∩ hj 
= φ

where Ki = YiX
−1, X = P−1, Z = XQX.

(A3)
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Theorem 2.

Assume that the initial condition x(o) is known,

then[28−31]:

1) The constraint on control input ‖u(t)‖2< ϕ for t≥0

can be represented by[
1 x(0)T

x(0) X

]
≥ 0 (A4)

[
X Y T

i

Y T
i ϕ2I

]
≥ 0. (A5)

2) The constraint on output ‖ y(t) ‖2< ρ for t ≥0 can be

represented by [
1 x(0)T

x(0) X

]
≥ 0 (A6)

[
X XCT

i

XCT
i ρ2.I

]
≥ 0 (A7)

where

Ki = YiX
−1, X = P−1. (A8)
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