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Abstract: The paper presents readily implementable approaches for fault detection and diagnosis (FDD) based on measurements

from multiple sensor groups, for industrial systems. Specifically, the use of hierarchical clustering (HC) and self-organizing map neural

networks (SOMNNs) are shown to provide robust and user-friendly tools for application to industrial gas turbine (IGT) systems. HC

fingerprints are found for normal operation, and FDD is achieved by monitoring cluster changes occurring in the resulting dendrograms.

Similarly, fingerprints of operational behaviour are also obtained using SOMNN based classification maps (CMs) that are initially

determined during normal operation, and FDD is performed by detecting changes in their CMs. The proposed methods are shown

to be capable of FDD from a large group of sensors that measure a variety of physical quantities. A key feature of the paper is the

development of techniques to accommodate transient system operation, which can often lead to false-alarms being triggered when using

traditional techniques if the monitoring algorithms are not first desensitized. Case studies showing the efficacy of the techniques for

detecting sensor faults, bearing tilt pad wear and early stage pre-chamber burnout, are included. The presented techniques are now

being applied operationally and monitoring IGTs in various regions of the world.
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1 Introduction

The purpose of fault detection is to automatically gener-

ate an “alarm” or “flag” to inform operators of impending

or developing failure, whilst fault diagnosis aims to identify

the location and predict the consequences of the failure[1].

The adoption of “early warning” systems to identify and lo-

calize emerging faults has therefore attracted considerable

attention due to the widely-recognized benefits of facilitat-

ing reduced down-time and assurance of safety, through the

use of fault detection and diagnosis (FDD)[2,3] algorithms.

Of the methods previously explored to date, FDD

techniques can be broadly divided into three categories

viz. knowledge-based, model-based and signal processing-

based approaches[3−5]. Knowledge-based approaches of-

ten rely on monitoring residuals between multiple sensor

measurements[6], however, due to the high number of sen-

sors used on modern industrial gas turbines (IGTs) and

other complex industrial systems, the adoption of addi-

tional redundant sensors is prohibitively expensive. When

using model-based approaches, a virtual sensor (a “model”

by some description) is employed to provide an estimate of

expected measurements, from which residuals are then used

as an indicator of potential failure modes being present[3].

However, for large IGT systems, which are often custom-

designed to meet individual orders, the use of application

specific materials and components (e.g., to satisfy off-shore
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oil platform regulations) often makes the identification of an

accurate dynamic model that can accommodate the full op-

erating envelope, extremely difficult. In such circumstances,

techniques based on direct signal processing and data fusion

provide more practical and efficient FDD solutions[4].

Considering signal processing-based FDD approaches,

principal component analysis (PCA)[7] and artificial neu-

ral networks (ANNs)[8] have been the most popular candi-

date solutions to date. PCA based squared prediction error

(SPE) is well established and extensively applied to detect

sensor faults in industrial processes and power control[9−11].

However, since SPE alone cannot identify the faulted sen-

sor, additional algorithms are applied for sensor fault iden-

tification. For instance, sensor validity indices (SVIs) are

introduced in [10], and graphical SPE-contribution plots

are presented as a supplement to SPE to identify the sen-

sor or component at fault in [11]. Moreover, for FDD,

candidate ANN techniques are mainly based on multi-

layer perceptron neural networks (MLPNNs)[12] and self-

organizing map neural networks (SOMNNs)[13]. Outputs

from MLPNNs, in particular, have been compared with

the performance from support vector machine (SVM) based

techniques[14, 15] for FDD in rotating machinery. Specially,

in [16], ANNs are used with pre-processed vibration signals

as input features. Although the SVM solution presented

in [16] cannot be considered optimal in the cited instance,

the authors nevertheless concluded that ANNs achieved a

high performance success rate compared to solutions from

SVMs, and that ANNs are more readily trained (with re-

gard to required computation overhead) and more robust

than SVMs. SOMNNs have also demonstrated good per-
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formance than MLPNNs for FDD in induction machines[17],

with [18] concluding that SOMNNs generally provide better

solutions and other radial basis function neural networks

(RBFNNs) for this application field.

Considering cluster analysis methodologies, some prece-

dence also exists for their use in FDD. Compared to the

use of “black-box” models typical of those used in ANNs,

and alternative complex eigenvector-eigenvalue techniques

of PCA, cluster analysis is a more straightforward technique

derived from relatively basic distance algorithms, and have

therefore gained favour since they are readily implemented

and interpreted. Specifically in [19], four unsupervised

clustering models are employed, including SOMNNs, hier-

archical tree models and quality adaptive threshold mod-

els, along with a new hybrid model for FDD of industrial

robots. From the results, the authors conclude that super-

vised classification algorithms often fail when encountering

new data, whilst in contrast, unsupervised techniques, such

as SOMNNs and hierarchical clustering (HC) methods, are

more robust for novelty detection[19, 20]. The authors of [21]

applied HC to monitor a large group of sensors for the wide

area backup protection of electric power systems. They

conclude that HC could accomplish FDD successfully, and

the dendrograms of HC provided an intuitive presentation

mechanism.

In this paper, HC and SOMNN are applied for FDD to

provide a corroborative early warning system. Whilst typi-

cally, fault diagnosis algorithms are applied after the initial

detection of an emerging fault, thereby forming a two-stage

FDD procedure[1,2], here, the proposed FDD approaches

both detect and identify emerging faults in a single stage.

Another key aspect of this paper is an investigation of how

the techniques can accommodate transient operational con-

ditions that typically generate unexpected “false alarms”

resulting in unnecessary unit shutdowns. This often oc-

curs as a consequence of algorithms being “tuned” during

steady operational conditions, for instance [22, 23], and are

typically addressed by subsequently desensitizing the mon-

itoring algorithms, which then leads to the non-detection of

genuine fault conditions.

2 Problem statement

In this paper, two large groups of sensors on an IGT sys-

tem are used to focus the study. The IGT consists of 3

stages viz. compressor (gas turbine), combustion chamber

and power turbine, as shown in Fig. 1, and are classified

according to the amount of power they generate and their

functionality.

A group of 19 sensors, labelled “Group 1”, includes 13 en-

gine exhaust gas temperature (EGT) sensors (sensors EGT1

to EGT13) and 6 pilot burner-tip temperature (BTT) sen-

sors (sensors BTT1 to BTT6). Additionally, a second

group, Group 2, consists of a set of 16 sensors that provide

8 bearing vibration (BV) measurements (sensors BV1 to

BV8) and 8 bearing temperature (BT) sensors (sensors BT1

to BT8), that are sited orthogonally on the turbine units

(Fig. 1 (a)), as indicated in simplified form in Fig. 1 (b).

(a) Classification maps (Case 1)

(b) Classification maps (Case 2)

Fig. 1 Principle system configuration for the study (a)

Schematic of an industrial gas turbine system; (b) Sensor po-

sitioning: Group 1 – EGT and BTT sensors, and Group 2 – BV

and BT sensors

Here, HC and SOMNN solutions are developed for FDD

on the IGTs. Through HC, operational “fingerprints” are

constructed from daily HC dendrograms which are then

compared with dendrograms that are considered to rep-

resent “normal operation” of the unit, in order to detect

and identify faults. In this instance, the data sampling

rate is one sensor set measurement per minute. Similarly,

through the use of SOMNNs, which can also provide a vi-

sual classification of data suitable for operator interpreta-

tion as well as numerical outputs, the resulting classifica-

tion maps (CMs) are compared with the normal “finger-

print” CMs, to provide additional corroborating evidence

to support the detection results from HC. The efficacy of

the developed techniques is demonstrated through the use

of three case studies to detect: 1) burner-tip pre-chamber

burnout caused by contamination in the gas fuel system, 2)

sensor fault as a consequence of low supply voltage, and 3)

detection of tilt pad fretting caused due to absence of lubri-

cant. Early detection of these types of emerging faults and

the identification of affected components prevent unneces-

sary consequential damage to the engine and subsequent

downtime. The information also facilitates flexible mainte-

nance scheduling as opposed to a calendar-based approach

which is typical of the sector.
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3 Underpinning concepts

3.1 Hierarchical clustering

The underlying concept of agglomerative HC is to assem-

ble a set of objects into a hierarchical tree, where similar

objects join in lower branches and these branches further

join based on object “similarity”. Objects with the small-

est “distance” between them are joined by a branch of a

tree (i.e., a cluster). Further clusters are then formed from

merged sub-clusters, and the hierarchical process iterates

until only one cluster remains. The resulting hierarchi-

cal tree is then dissected according to either the linkage-

distance or cluster number, and in so doing is used to pro-

vide novelty detection.

To facilitate clustering of the sensor data, one of many

traditional “distance functions” that have been previously

reported could have been adopted. However, for simplic-

ity, the most common measure is used here, the Euclidean

distance:

d (x, y) =

√
√
√
√

N∑

i=1

(xi − yi)
2 (1)

where x and y are two 1×N vectors, i.e., the signals,

(x1, x2, · · · , xN ) and (y1, y2, · · · , yN). A cluster is formed

when the data from two sensors in a group have the mini-

mum Euclidean distance — for instance, sensors EGT5 and

EGT7 in Fig. 2. The first iteration provides the lowest rank-

ing cluster. The procedure is subsequently iterated, includ-

ing already constructed clusters, to link higher ranking clus-

ters (see [24] for an account of the underlying procedure).

An average linkage measure is used to calculate the mean

distance between all pairs of objects in clusters m and n:

D (m, n) =
1

NmNn

Nm∑

j=1

Nn∑

k=1

d (xmj , ynk) (2)

where j = 1, 2, · · · , Nm and k = 1, 2, · · · , Nn. d (xmj , ynk)

is the distance between two objects in the two clusters. Nm

is the number of objects in cluster m, and Nn is the number

of objects in cluster n. For instance, in Fig. 2, the distance

between the EGT sensor branch and the BTT sensor branch

is calculated by the average sum of the distances of all the

sensors between these two branches, where Nm = 13 and

Nn = 6.

In this way, a visual representation of the correlation be-

tween sensed variables, and between measurements from

multiple sensors, can be readily used as a “fingerprint” of

unit operational characteristics. By comparing such finger-

prints with those derived from subsequent batch measure-

ment sets taken on a daily basis, the emergence of “nov-

elty” in the unit′s operation can be identified prior to catas-

trophic failure. For the application considered here, an ex-

ample “normal” fingerprint for “Group 1” sensors is shown

in Fig. 2, which is generated from the sample temperature

measurements in Fig. 3. It can be seen that a clear separa-

tion exists between the data from the EGT and the BTT

Fig. 2 HC dendrogram: fingerprint for normal operation

(Group 1: E = EGT; B = BTT)

Fig. 3 Temperature measurement taken during normal opera-

tion (Group 1): 13 EGT sensors; 6 BTT sensors)
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sensors in the dendrogram, although it is less apparent from

the raw measurement data.

3.2 Self-organizing map neural networks

A SOMNN is a competitive ANN, using unsupervised

learning to produce a discretized representation (typically

in two-dimensions) of the input space, called a “self-

organizing map” (SOM)[25]. The input data vector, in this

case a sampled sensor signal, x = [x1, x2, · · · , xN ] ∈ RN ,

with N variables, is associated with a reference vector,

ri ∈ RN , which is often randomly initiated to give each

neuron a displacement vector in the input space. For each

sample of x(t), rw(t) constitutes “the winner”, by seeking

the minimum distance between the input vector and the

reference vector, and is calculated from:

‖x(t) − rw(t)‖ ≤ ‖x(t) − ri(t)‖ for ∀i. (3)

After obtaining a “winner”, the reference vectors are up-

dated using

ri(t + 1) = ri(t) + nw,i(t) (x(t) − ri(t)) (4)

where nw,i(t) is a neighbourhood function that is normally

chosen to be Gaussian. The reference vectors are adjusted

to match the training signals, in a regression process over a

finite number of steps, in order to achieve the final SOMs.

For this specific application field, SOMNN training is per-

formed initially using measurements considered to reflect

“normal operation”, as shown in Fig. 3, with 19 variables

and 1440 time samples in the network. To obtain a visual

output of the classifications, the SOMNN is initially trained

with the output space depicted as 8×8 hexagonal grids, us-

ing MATLAB neural network toolbox[26]. Here, 1440 sam-

ples of the 19-dimensional (sensor measurement) data are

projected into the 64 neurons (clusters), that form a map in

a two-dimensional space topologically (see the 8×8 hexago-

nal grids shown in Fig. 4). Through training, the reference

vector of each neuron moves closer to the cluster center ac-

cording to the samples that are clustered in the neuron,

and the neighboring neurons also move closer to one an-

other, eventually forming the final SOM. The sample hits

i.e., how many samples (out of the 1440 samples) are clus-

tered into each neuron, are shown in Fig. 4. For instance,

for the (circled) top left node, 8 samples from the original

input are clustered into this neuron.

After being clustered, the weight vectors of the 64 neu-

rons are calculated for each variable independently, by com-

paring the variable (signal) with the reference vectors of

the neurons (the cluster centers after training) in the final

SOM. In this way, 19 component (variable) weighting planes

(matrices) are calculated, as shown in Fig. 5, with each sub-

plot considered as a visualization of the weights from the

variable (input) to the neurons (output), which can be con-

sidered as the deviations of each measurement from the 19

sensors′ average characteristic. A dark color on a particular

grid indicates a stronger connection between the input and

the output, and vice-versa. The component weight planes

provide convenient visual interpretations since connection

patterns that are similar mean that the variables are highly

correlated, and vice-versa. From the results in Fig. 5, for

instance, a clear separation of the weighting matrices is

evident between EGT1–EGT13 and BTT1–BTT6 during

normal operation. This is therefore again considered as a

“fingerprint” of the unit′s behaviour whilst operating nor-

mally. It is a comparison of fingerprints from subsequent

measurements, and the changes that are identified, that are

considered to provide FDD.

Fig. 4 SOMNN neuron sample hits from 1440 samples of data

from the 19 sensors

Fig. 5 Component planes of the map for normal operation

(Group 1)

4 Application case studies

For remotely monitored GT units, a HC tree (dendro-

gram) is automatically generated using daily batched mea-

surement processing, which is then compared with the nor-
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mal operation HC fingerprint (Fig. 2) for FDD. Similarly,

the SOMNN is applied to data from the unit on a real-time

basis to detect deviations from normal behaviour i.e. nov-

elty detection, through the use of SOM component planes

and classification maps (CMs). The application of HC and

SOMNN for FDD in this manner is now presented with

results taken from three example case studies.

4.1 Case 1. Detection of pre-chamber
burnout

By comparing batch measurement data taken on a daily

basis with the “normal” HC fingerprint in Fig. 2, faults can

be detected by identifying cluster changes in the dendro-

grams. By way of example, Fig. 6 shows a subsequently

developed dendrogram that does not “fit” the normal fin-

gerprint in Fig. 2. In this case, sensor BTT6 resides in a

higher sub-cluster, where the normal fingerprint shows the

EGT and the BTT sensors in two main clusters that are

equally separated. This is indicative of a change in charac-

teristics. By consulting the actual sensor measurements in

Fig. 7, it is clear that a fault relating to measurements from

BTT6 is evidently emerging.

Fig. 6 Case 1. HC dendrogram indicating sensor BTT6

anomaly (E=EGT; B=BTT)

Notably, the measurements remain within the normal

range and would not have been flagged as evidence of an

emerging fault to an operator at this relatively early stage.

The HC has therefore provided an early warning of a devel-

oping abnormal situation.

Similarly, the measurements in Fig. 7 are also applied to

the SOMNN resulting in the calculated component planes

shown in Fig. 8. If the weighting planes are considered as a

contour map of a 3-D surface, where the color, from light

to dark, indicates, respectively a range from minimum to

maximum, it can be seen that the “surface” corresponding

to sensor BTT6 is characterized by principal directions and

curvatures that are notably different from those of the other

sensors. In this way, it is clear that a distinction between

the expected and real behaviour of BTT6 has been identi-

fied. Crucially, this is also commensurate with the results

of HC.

Although the graphical interpretation is convenient for

trained operators, to provide an automated “alarm” an al-

ternative numerical interpretation can also be obtained by

applying the SOMNN to give a 2-classification output. The

resulting abnormal classification map data (ACM) is given

in Table 1, where sensor BTT6 is clustered into class 2

rather than into class 1 as would be expected by comparing

to the normal classification map (NCM) — refer to the clus-

tering in Fig. 6 to see the exact correspondence. As well as

being consistent with the results from the component planes

(Fig. 8) and thereby indicating “abnormal characteristics”,

it also readily provides for a simple “early warning flag” for

the operator.

Fig. 7 Case 1: Temperature measurements showing an emerg-

ing fault relating to sensor BTT6
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In this instance, subsequent field investigations identified

a BTT6 measurement outlier due to the presence of liquid

hydrocarbon based contamination within the gas fuel sys-

tem. The hydrocarbon based contaminant is introduced

into the combustion system as a “slug” that impinges onto

the wall of the flame tube pre-chamber causing localised

temperature changes (see Fig. 9). The BTT6 measurement

Fig. 8 Case 1: Component planes of the map showing BTT6

fault

Fig. 9 Photos of (a) an early stage of pre-chamber burnout; (b)

a pre-chamber burnout failure

is seen to be significantly lower in temperature over time

following the pre-chamber burnout which is caused by the

extra air being introduced via the pre-chamber of the flame

tube. In this instance, the BTT measurement gradually di-

verged by ∼300◦C resulting in incomplete combustion and

increased levels of emissions from the IGT. Typically, BTTs

are monitored within lean pre-mixed Dry Low Emission

combustion systems and protect the turbine by using tem-

perature limits to shutdown the unit if they are exceeded.

However, in this case, combustion damage occurs without

reaching these limits.

4.2 Case 2. Detection of sensor fault

Fig. 10 shows example “Group 2” measurement data

when the system is considered to be operating normally.

Using the HC approach, a “normal operational fingerprint”

of the unit is determined, as shown in Fig. 11.

By deriving HC dendrograms using subsequent daily

batches of data, an alternative dendrogram was detected

at a later date (see Fig. 12). In this case, Fig. 12 identi-

fies “novelty” from the measured data from sensor BV6, as

a result of a change in its associated cluster grouping. By

subsequently consulting the raw data (see Fig. 13), the fault

is clearly evident.

Fig. 10 Measurements during normal operation (Group 2): 8

BV sensors; 8 BT sensors

Notably, by using simple classical detection limits to
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identify anomalies, the fault would not have been captured.

However, by inherently incorporating the interrelationship

between groups of sensor measurements, the HC recognizes

the “novel” characteristic.

To provide corroborating evidence, a SOMNN is also

trained using the measurements shown in Fig. 10, with 16

variables (BV1–BV8 and BT1–BT8) in the network. The

weighting matrices of 64 neurons for the 16 sensors are

shown in Fig. 14, which is given to provide a separation

between BV1–BV8 and BT1–BT8 during normal opera-

tion (matching the HC results in Fig. 11). The component

planes of the subsequent maps derived from the measure-

ments in Fig. 13, are shown in Fig. 15, which, once again

identifies that sensor BV6 is providing different character-

istics compared to the other sensors (consistent with the

HC outputs in Fig. 12).

To aid in the generation of automatic alerts, the SOMNN

is also trained to classify the data from the 16 sensors into

2 patterns (with indices 1 and 2), with the NCM and the

ACM in this case being shown in Table 2, where the NCM

shows two classifications between the BV and the BT sen-

sors, and the ACM shows that sensor BV6 is classified as

an abnormal sensor measurement set in the group.

Fig. 11 HC dendrogram: fingerprint for normal operation

(Group 2)

Fig. 12 Case 2: HC dendrogram showing sensor BV6 anomaly

Fig. 13 Case 2: Vibration and temperature information indicat-

ing a fault in BV6 sensor

Fig. 14 Component planes of the map for normal operation

(Group 2)

In this case, subsequent field investigations showed a

trend of transient spikes on measurements from BV6, fol-

lowed by long periods of constant steady readings over pro-

tracted durations caused by transient short circuits and
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subsequent low-battery voltages that power the sensor. In

this case, after FDD, the faulted sensor was replaced for

assurance of safety and reliability, but without needing to

shut down gas turbine unit, and thereby facilitated greater

unit availability.

4.3 Case 3. Detection of bearing fault

The proposed HC and SOMNN approaches are readily

applicable to the identification of component faults that be-

come evident from anomalous measurements from sensors

clusters and/or sensors from different groups. By way of ex-

ample, Fig. 16 shows batch vibration and temperature data

that has been applied to the HC and SOMNN algorithms.

The resultant HC dendrogram is shown in Fig. 17. It can

be seen that both BV1 and BV2 are clustered outside their

“normal” fingerprint. Since BV1 and BV2 sensors are sited

at adjacent locations on the gas turbine inlet bearing, this

is indicative of a machine component fault at that location

(as opposed to multiple sensor faults).

Fig. 15 Case 2: Component planes of the map showing BV6

sensor fault

Similarly from the SOMNN, the resultant component

planes, after training, are shown in Fig. 18 (corroborating

the results from HC in Fig. 17), and by comparison with the

NCM, the 2-classification results (ACM) in Table 3, show

that both BV1 and BV2 indicate different characteristics

from that expected from other sensor measurements, again

indicating the emergence of a localized component fault.

Subsequent investigations focused on the identified in-

let bearing, shown in Fig. 19 (a), which has a diameter

of approximately 150 mm and runs at speeds in excess of

14 000 rpm, and is subject to radial loads upto 3.0 kN, and

thrust loads upto 30 kN. The tilt pads are approximately

10mm thick and approximately 42mm in length, as shown

in Fig. 19 (b). The bearing failure in this instance is caused

by wear on the back of the tilt pad by fretting, with the

bearing and the failed tilt pad shown in Fig. 20 (a) and (b),

respectively. By comparison with unworn bearings, Fig. 19,

the metal damage of the tilt pad (localized wear) in Fig. 20

is clearly evident. This is caused by metal-to-metal mate-

rial incompatibility due to the absence of lubricant at the

contact areas between the bearing assembly and the tilt

pad, so that eventually the tilt pad does not tilt anymore,

resulting in final bearing failure.

Fig. 16 Case 3: Vibration and temperature measurements indi-

cating a bearing fault from BV1 and BV2

Fig. 17 Case 3: Dendrogram indicating gas turbine inlet vibra-

tion bearing (BV1 and BV2) fault
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Although the presented HC technique is demonstrated to

Fig. 18 Case 3: Component planes of the map showing gas tur-

bine inlet bearing fault (BV1 and BV2)

Fig. 19 Photos of (a) a normal bearing (half assembly) and (b)

the back and inside of normal tilt pads

be of significant benefit for FDD, no direct “error estima-

tion” mechanism to monitor the efficacy of the algorithm

is directly available. In such circumstances, it is therefore

prudent to also use an alternative method for classifica-

tion to provide corroborating evidence of emerging failures.

A candidate unsupervised technique adopted here uses a

SOMNN, which can again provide a visual classification of

data suitable for operator interpretation, as well as provide

numerical outputs for producing automated alerts. In this

case, the resulting CMs are used to provide additional cor-

roborating evidence to support the detection results from

HC dendrograms.

An advantage of using SOMNNs in this manner is that

they can be simply realized with a numerical output. How-

ever, the “black-box” nature of ANNs provides little in-

sight into the relationship between the actual inputs and

the ultimate confidence in the final results at the output.

Nevertheless, the experimental trials do support their effec-

tiveness as an “early warning” of faults, and for facilitating

an operator to subsequently discriminate which sensor or

component is at fault.

Fig. 20 Photos of (a) a failed journal bearing and (b) wear on

the back of the tilt pad due to fretting

A notable feature of the measurements in Fig. 10 for in-

stance, is the data contains significant transients due to

changes in load and power demand. Importantly, the HC

“fingerprint” is shown to be robust to such effects without

creating undue false-alarms which is an unfortunate charac-

teristic of other methods that often misclassify unless pre-



472 International Journal of Automation and Computing 14(4), August 2017

sented with steady-state data[22, 23]. Conversely, even when

masked by the effects of transient demand/load changes

(Figs. 13 and 16), abnormal characteristics due to faults are

still correctly identified. As with the use of HC, the pro-

Table 1 Classification maps (Case 1)

Sensors EGT1 EGT2 EGT3 EGT4 EGT5 EGT6 EGT7 EGT8 EGT9 EGT10 EGT11 EGT12 EGT13 BTT1 BTT2 BTT3 BTT4 BTT5 BTT6

NCM 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2

ACM 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2

Table 2 Classification maps (Case 2)

Sensors BT1 BT2 BT3 BT4 BT5 BT6 BT7 BT8 BV1 BV2 BV3 BV4 BV5 BV6 BV7 BV8

NCM 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

ACM 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1

Table 3 Classification maps (Case 3)

Sensors BT1 BT2 BT3 BT4 BT5 BT6 BT7 BT8 BV1 BV2 BV3 BV4 BV5 BV6 BV7 BV8

NCM 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

ACM 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1

posed SOMNN approach is also shown to accommodate op-

erational transient behaviour without inducing false-alarms,

whilst also correctly identifying failure modes (see Figs. 12

and 17), and the resulting CMs in Tables 2 and 3, for in-

stance.

5 Conclusions

Both the HC and SOMNN approaches have been re-

alised for automatic FDD. Daily datasets are downloaded

from a fleet of IGTs, and are used to provide daily re-

ports of classification, i.e., normal operation or abnormal

operation, which include the identification of faulted sen-

sor(s) and the location of emerging component failures. Al-

though the techniques have been developed for, and applied

to IGT systems here, ultimately the underlying principles

are generic and are much more widely applicable to identi-

fying fault modes in alternative complex systems with large

sensor groups. The developed techniques are being used as

part of a suite of agents that actively monitor IGTs across

the various regions of the world.
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