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Abstract: This paper reviews existing approaches to the airport gate assignment problem (AGAP) and presents an optimization

model for the problem considering operational safety constraints. The main objective is to minimize the dispersion of gate idle time

periods (to get robust optimization) while ensuring appropriate matching between the size of each aircraft and its assigned gate type

and avoiding the potential hazard caused by gate apron operational conflict. Genetic algorithm is adopted to solve the problem. An

illustrative example is given to show the effectiveness and efficiency of the algorithm. The algorithm performance is further demonstrated

using data of a terminal from Beijing Capital International Airport (PEK).
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1 Introduction

Airport gate assignment problem (AGAP) focuses on

flight-to-gate allocation at airports, which is a critical

decision problem in the daily operations of modern air

transportation industry. As the global traffic volume in-

creases dramatically, the demand for air transportation

grows apace as well[1]. Therefore, airports are increasingly

facing capacity pressure. However, expanding airport ca-

pacity by planning and building new terminals is a very

time-consuming process and cannot ease the capacity pres-

sure in short term. Hence, airport operators or terminal

managers have to utilize the limited gates available more

effectively to guarantee safe and smooth daily operations

at airports.

Optimizing the operation of an airport involves interac-

tion among all airport partners working as a team. Gate as-

signment is a key activity and most other ground operations

are then performed based on its results. Airport gate as-

signment involves the task of assigning a given set of flights

from different airlines to a fixed number of gates available at

airport while satisfying some operational requirements and

specific constraints[2]. The flights have specified arrival and

departure times and other important information includ-

ing the sizes and types of the serving aircrafts, the num-

bers of passengers, etc. As a typical hub airport usually

handles hundreds of domestic and international flights in

each day[3], unreasonable assignments may result in flight

delays, poor customer satisfaction, disproportion of gate

utilization, ground congestion and safety issues with poten-

tial hazards caused by aircraft push-back or taxi conflicts
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around adjacent gate areas, and even extra cost of fuel for

both arriving and departing aircrafts. Extra fuel consump-

tion may increase the exhaust emission as well, especially

when the airport capacity is nearly saturated by its present

configuration.

As a combinatorial optimization problem, the gate as-

signment problem is easy to understand but difficult to

solve. It is affected by a wide range of different services run-

ning on the airport ground[3], involving aircrafts, gates, gate

facilities, and various types of service vehicles (cargo, food,

fuel, de-icing vehicles and towing tug, etc.) with ground

crews. Thus, any decision making for the usage of these

interdependent resources will bring different degrees of in-

fluence on each section of the overall operation. Moreover,

although gate assignment is a static and predetermined pro-

cess, it has to handle some temporary changes (flight delays

and emergency flights) and unexpected events (mechani-

cal fault of aircrafts, manual operating errors and severe

weather conditions) under the dynamic and uncertain en-

vironment of the airport in the last-minute phase. For in-

stance, a significant delayed arrival of one specific flight may

generate a series of problems and lead to a “domino effect”

or traffic standstill throughout the corresponding section of

airport operation[4, 5]. In this case, from a practical point of

view, an optimal or more efficient gate assignment should

be flexible for compensating the minor delays or temporary

changes subject to uncertainties.

Due to the uncertainties in real-time operations, another

very important element that must be taken into account

in gate assignment is operational safety. The present op-

erations rely heavily on the ground crew to observe the

movements of aircrafts and other vehicles on the ground

and to ensure safety. However, it is not easy for the oper-

ators to control every section of the whole operation accu-

rately all the time. Carelessness or other human errors may

potentially cause safety hazards in airport daily activities.
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Meanwhile, it is also difficult to solve the safety problem

in an exact and efficient manner once conflict or collision

happens. Some measures have been taken to improve safety

of the airport operations in both theoretical and practical

aspects[6, 7]. For example, setting a buffer time between

two consecutive flights assigned to the same gate is a recog-

nized measure for providing safety protection and avoiding

conflicts at gates.

Safety problems in airport operation may be caused by

various conflicts, including basic gate occupation conflicts,

aircraft ground movement conflicts near the terminal gate

area, as well as conflicts on main taxiways in the taxiing se-

quence problem[6, 8]. Most existing work considering safety

issues only deals with the problem after the incident hap-

pens and further analyzes the results, rather than tries to

avoid conflicts beforehand. In our work, we try to address

the issue of conflicts in advance by including operational

safety constraints (No two flights with overlapping ground

movement times are assigned to adjacent gates.) in the

model. In this way, the problem of ground movement con-

flicts near the terminal gate area will be avoided in the first

place (pre-assignment stage). As can be seen from above,

AGAP is more complicated than many traditional schedul-

ing problems to some extent because it involves additional

safety constraints apart from time and resource constraints.

The rest of the paper is organized as follows. A literature

review is first presented in Section 2. Section 3 then gives a

brief description of the problem and the details of the safety

requirements. In Section 4, an integer programming formu-

lation is provided. The basic idea of the genetic algorithm

used to solve the problem is introduced in Section 5. In Sec-

tion 6, the significance and influence of considering safety

issues of AGAP are discussed and demonstrated using an

illustrative example and the method is further tested using

real airport data. Conclusions are given in Section 7.

2 Literature review

In previous research, many mathematical models and

techniques have been developed with different objectives

and corresponding practical rules and restrictions (either

hard or soft) for AGAP. A basic version is modelled as a

quadratic assignment problem and proved to be NP-hard[9].

The objectives used for AGAP can be classified into ei-

ther passenger-oriented or airport-oriented[5, 10−13]. For the

purpose of increasing passengers′ satisfaction, AGAP with

the first type of objectives are mainly focusing on minimiz-

ing the total walking distance of both arriving and depart-

ing passengers of the flights and minimizing the number

of flights assigned to remote apron stand (un-gated area far

away from the terminal building). The basic model with ob-

jective of minimizing the overall walking distance considers

distance between check-in counter and boarding gate, be-

tween disembarking gate and baggage claim, and between

arriving and departing flights for transferring passengers.

As the basic model becomes mature, researchers turn to

focus on using different methods to improve the computa-

tional efficiency in solving the problem[3, 4, 14−16] .

On the contrary, the airport-oriented objectives in AGAP

concentrate on improving gate utilization and the robust-

ness of the assignment for dealing with sudden changes such

as flight delays. Unexpected disruptions including early or

late arrivals and late departures have a major impact on the

smooth performance of pre-determined AGAP plan. There-

fore, instead of using inherent random input parameters

to represent the stochastic disruptions, some concepts of

achieving robustness of gate assignment are proposed[17−19],

such as idle time, buffer time, gate conflict, etc. Mangoubi

and Mathaisel[12] state that if only considering minimiza-

tion of the total passenger walking distance in real-time

gate assignment problem, then the highly utilized gates

may have the weakest performance on absorbing early or

late arrival aircrafts, which may also lead to the gate con-

flict problem for every flight pre-assigned to the same gate

with estimated gate occupation time. Yan et al.[20] also ar-

gue the importance of adding buffer time between flights

into the model and demonstrate that it is useful in improv-

ing the punctuality of robust schedule between the con-

secutive flights assigned to the same gate. Alternatively,

Bolat[19] considers the objective of minimizing the variance

of the idle time. The purpose of his approach is to im-

prove the possibility of uniform distribution for gate uti-

lization, while maintaining robustness in gate assignment

at the same time.

Most previous works on airport gate assignment problem

do not take into account the safety issues firmly or only

touch upon the safety elements separately from the gate

assignment problem itself. As a matter of fact, considering

safety issues should be given higher priority than efficiency

and economic considerations in airport traffic management

(ATM). Therefore, different from the most common objec-

tives, some other approaches turn to focus on solving the

conflict problems in relevant airport operations[6, 8, 21−24].

Cheng[6] first defines push-out conflicts and makes an over-

all analysis of the influence on both ground movement oper-

ations (on gate apron taxiways) and gate assignment oper-

ations simultaneously. A network-based simulation model

is proposed to support the analysis. With the inspiration of

his achievement, some following works also consider avoid-

ing the potential hazard in push-out (or push-back) conflicts

by using either the ground holding strategies or simulating

the taxiway information on the basis of real-time process.

For instance, Kim et al.[8, 23] apply the gate-holding depar-

ture control strategies and use a queuing model to simulate

the aircraft departure process. They then try to predict

and reduce the operation time in order to minimize the

ramp congestion. Moreover, Atkin et al.[22, 24] use various

test data to demonstrate that the major problem of this

push-back conflict will affect further steps of taxi operation

in ATM. They also evaluate the final allocation results by

introducing a novel towing constraint, which can solve the

problem of ground movement conflicts.

Some gate holding strategies pay more attention to sim-

ulating the taxi process of arriving aircrafts in different
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speeds and positions, then use the simulation results to help

determine whether the taxiing aircrafts will block the rel-

evant towing area for other departing aircrafts. However,

in practice, this kind of ground holding strategy will reduce

gate utilization and may sometimes cause further delays.

Moreover, parameters used in the simulation may affect the

results. Therefore, considering real time operation uncer-

tainties, we try to rule out possible hazards in advance and

ensure that operations based on the gate assignment plan

will not lead to conflicts. This means that conflicts in air-

craft ground movements near gate area will be avoided by

considering the operational safety constraints in the gate

allocation stage.

It is worth noting that little work has been done in ex-

isting studies on improving both safety and efficiency in

AGAP. Thus, the main goal of this paper is to apply robust

assignment to improve the gate utilization efficiency, while

considering the safety issues concurrently.

3 Problem description

According to the description of push-back conflict in pre-

vious studies[6, 21], taxi-in or taxi-out refers to the move-

ment of each aircraft into or out of the allocated parking

position by its own engine power, whereas the push-back

means that when an aircraft is ready for departing, it will

be pushed out of the gate area or apron stand by a towing

tractor. For small aircraft (around 60 passengers), taxi-out

operation may be applied. For most of the medium and

large aircrafts, push-back arrangement is commonly used

in terms of nose-in parking. However, the nose-in parking

requires manual operation and guidance from ground han-

dlers, which may cause conflicts on the taxi lane near the

gate ramp area.

Hence, we try to consider conflicts of three types: conflict

between push-back and taxi-in, conflict between taxi-ins,

and conflict between push-outs.

Push-back & taxi-in conflict. In Fig. 1, there is an

overlapping ground movement time between two aircrafts,

one departing and one arriving, that are assigned to adja-

cent gates 3 and 4. In this case, there is a high potential of

conflict between the two aircrafts. Obviously, this condition

cannot be allowed in our optimization model.

Fig. 1 Conflict between push-back and taxi-in

Conflict between taxi-ins. When two arriving air-

crafts with overlapping ground movement time are assigned

to adjacent gates 2 and 3 in Fig. 2, there is a high potential

of conflict under this circumstance.

Fig. 2 Conflict between taxi-ins

Conflict between push-outs. Similarly, in Fig. 3,

when both departing aircrafts with overlapping ground

movement time are assigned to adjacent gates 2 and 3,

there is also a high risk of potential conflict between the

two flights.

Fig. 3 Conflict between push-outs

An incident is considered as an accident when there is a

loss of life or severe damage[25]. Normally, there were no

casualties of passengers reported in the conflicts between

the pushing back and taxiing of aircrafts, because there are

strict criteria in ATM, which can standardize and restrict

the ground movement speed for all the relevant airport op-

erations, such as aircraft taxiing or towing, etc. However,

this kind of low speed collision will bring tremendous cost

of aircraft damage. A major reason for such collision is im-

proper gate assignment. If aircrafts with time overlapping

in their taxi-in, push-back or taxi-out operations are not as-

signed to the adjacent gates, then the possibility of potential

hazards in these operations will be reduced markedly.

From most of the former studies[3, 4], the classic con-

straints can be recognized as either hard or soft (particular

airport layout, airline specified gate area, priority of gate

occupation for emergency flight, etc.). Normally, there are

two hard constraints:

Flight-to-gate uniqueness. Every flight must be as-

signed to one and only one feasible gate.
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Gate conflict avoidance. No two flights with overlap-

ping gate occupation time are assigned to the same gate.

In our model, we also consider the safety constraints (air-

craft conflict avoidance) as a hard one:

Aircraft conflict avoidance. No two flights with over-

lapping taxi-in or push-back times are assigned to adjacent

gates.

The gate assignment problem we study is then to assign a

set of flights to gates to minimize the dispersion of idle times

of the gates while satisfying the above hard constraints.

4 Problem formulation

The gate assignment problem can be viewed as a

resource-constrained assignment problem where gates are

considered as limited resources and aircrafts play the role

of resource consumers. We formulate the problem as an

integer programming model in this section.

4.1 Notations

The notations used for formulating the model are shown

as follows.

Problem parameters:

N = {1, 2, · · · , |N |} is the set of flights arriving at and/or

departing from the airport in the scheduled day.

M = {1, 2, · · · , |M |} is the set of gates available at the

airport.

Ai is arrival time of flight i.

Di is departure time of flight i, D0 = 0.

α is minimum conflict avoidance time.

β is buffer time between two consecutive flights assigned

to the same gate.

ui is parameter indicating the type of aircraft of flight i.

ui = 1 if flight i is a large aircraft, else ui = 0.

vk is parameter indicating the type of gate k. vk = 1 if

gate k is a large one, else vk = 0.

T is the fixed closing time of all gates after daily use.

θ is penalty for assigning a flight to a remote apron stand.

Decision variables:

Sik is the idle time of gate k before flight i.

xik is binary decision variable. xik = 1 if flight i is as-

signed to gate k, else xik = 0.

xi,|M|+1 = 1, if flight i is assigned to a remote apron

stand, else xi,|M|+1 = 0.

zijk is binary variable. zijk = 1 if both flight i and flight

j are assigned to gate k, and flight i is followed by flight j,

else zijk = 0.

z0jk = 1, if flight j is the first flight assigned to gate k,

else z0jk = 0.

τk is the departure time of the last flight of gate k.

4.2 Objective function and model formu-
lation

The main objective is to minimize the dispersion of idle

time periods while avoiding mismatch between flight size

and gate type as well as satisfying safety requirements. The

original objective function can be denoted as

min F =

|M|∑

k=1

|N|∑

i=1

(Sik − S̄)2.

Since the total available time of gates and the ground

time of flights are known as a constant, whereas the specific

slack time for each gate is independent of the way that

flights are assigned, the total idle time for all available gates

at the airport in one day is fixed as well. In this case, the

function can be substituted by the form of
∑|M|

k=1

∑|N|
i=1 S2

ik.

In general, there should be an immediately preceding idle

time before each aircraft arrives. While for each gate, the

final idle time of a day should be considered as well, which

usually refers to the duration between the time when the

last aircraft leaves or is towed away for maintenance and

the time the gate closes. Consequently, the total number

of idle times can be concluded as |N | + |M |. In addition,

at busy hours, the number of arriving flights may exceed

what the gates can handle. In this case, some flights will

be assigned to remote apron stands. We add a penalty for

every such flight in the objective function to minimize the

number of flights assigned to remote apron stands. There-

fore, the objective function can be expressed as the variance

of idle times plus these penalties:

min F =

|M|∑

k=1

|N|∑

i=1

S2
ik +

|M|∑

k=1

(T − τk)2 +

|N|∑

i=1

θxi,|M|+1.

The related constraints are formulated as

∑

k∈M
⋃{|M|+1}

xik = 1, i ∈ N (1)

xik + xjk ≤ 1, if(Dj − Ai)(Di − Aj) > 0,

i, j ∈ N, k ∈ M (2)
∑

k∈M

∑

i∈N
⋃{0}

zijk = 1, j ∈ N (3)

xik + xjk − 2zijk ≥ 0, i, j ∈ N, k ∈ M (4)

xjk − z0jk ≥ 0, j ∈ N, k ∈ M (5)

Sjk ≥ β(1 − z0jk), j ∈ N, k ∈ M (6)

(ui − vk)xik ≤ 0, i ∈ N, k ∈ M (7)

Sjk ≤ Aj − Di + (1 − zijk)T, i ∈ N ∪ {0}, j ∈ N, k ∈ M

(8)

Sjk ≥ Aj − Di + (zijk − 1)T, i ∈ N ∪ {0}, j ∈ N, k ∈ M

(9)
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τk = max
i∈N

{Dixik}, k ∈ M (10)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

|Di − Dj | ≥ αxikxj(k+1)

|Di − Aj | ≥ αxikxj(k+1)

|Dj − Ai| ≥ αxikxj(k+1)

|Ai − Aj | ≥ αxikxj(k+1), i, j ∈ N, k, k + 1 ∈ M

(11)

xik, z0jk, zijk ∈ {0, 1}, i, j ∈ N, k ∈ M (12)

Sik, τk ≥ 0, i ∈ N, k ∈ M. (13)

Constraint (1) indicates that every flight must be as-

signed to only one gate or a remote apron stand. Constraint

(2) ensures that one gate can serve at most one aircraft at

a time. Constraints (3) and (4) give an exact description

of variable zijk. Constraint (5) defines z0jk variables for

the special case where a flight is the first one allocated to a

gate. Constraint (6) stipulates that the idle time between

the departure of a flight and the arrival of the next flight

assigned to the same gate must be at least the required

buffer time. Constraint (7) avoid mismatch between flights

and gates. Constraints (8) and (9) calculate the idle time

of each gate before each flight. Constraint (10) obtains the

departure time of the last flight of each gate, which is used

to calculate the last idle time of each gate in the objective

function. Constraint (11) guarantees the minimum time be-

tween the arrival and departure of two flights assigned to

adjacent gates to avoid conflict. Constraints (12) and (13)

are binary and non-negativity constraints for the variables.

5 Solution method

As seen from literature review, both exact and heuris-

tic methods have been proposed to find optimal or near-

optimal solutions for the AGAP. Due to the problem

complexity, exact algorithms such as branch and bound

algorithm[11] can only solve small scale problems. In most

of the major city airports, there are usually over 50 gates[3],

and the exact methods are unable to solve the realistic prob-

lems of this large size. Therefore, most of the previous re-

search solves the AGAP using meta-heuristic methods (e.g.,

genetic algorithm, tabu search, simulated annealing, swarm

intelligence and their hybrid approaches). In this study, we

use genetic algorithm to solve the problem and to check the

effect of adding safety constraints to the original gate as-

signment problem. In general, genetic algorithm performs

well for global searching and we expect it to be effective for

this problem.

5.1 Encoding and initialization

Using an integer string to present the chromosome is a

direct way to express the flight-to-gate relations. The length

of the string is |N | and each bit corresponds to a flight,

while the specific number in that gene bit represents the

gate number this flight is assigned to. For example, string

5 164 532 represents a solution of assigning 7 flights to 6

gates successively, where flights 1 and 5 are both assigned

to gate 5.

As one of the ideas in evolutionary algorithms, genetic

algorithm also concerns about how to make individuals con-

sistently updating and reproducing strong fitness in the

population. Literally, genetic algorithm maintains a pop-

ulation of chromosomes or individuals for each generation.

Each chromosome represents a solution to the problem at

hand. The GA process needs an initial population to start

the evolution. We generate the solutions in the initial pop-

ulation randomly to ensure diversity. Randomly generated

solutions may be infeasible because the AGAP is highly con-

strained. For each gene in the chromosome corresponding

to a flight, we randomly select a gate among those which can

accommodate the flight. This avoids the obvious infeasibil-

ity of flight-to-gate mismatching in the generated solution.

Other types of infeasibility will be resolved in the decoding

procedure described in the next subsection.

5.2 Decoding and fitness calculation

For any chromosome in the GA process, we need to con-

struct a corresponding gate assignment plan and calculate

its objective value. We have developed a procedure to check

the feasibility of each chromosome. And if it is infeasible,

a revised feasible solution is generated. This procedure is

applied to all chromosomes throughout the whole GA evo-

lution process, i.e., the chromosomes generated in the initial

population as well as those generated in further genetic op-

erations. An outline of the procedure is as follows:

1) Assign the flights to the gates according to the codes

in the chromosome being checked. Check the feasibility of

the assignment.

2) If the assignment is not feasible, revise it to make it

feasible. This is done by checking the flights one-by-one in

ascending order of their arrival times. If it is not feasible

for the flight to use the gate assigned, move it to another

gate which does not cause infeasibility to earlier flights. In

case there are more than one feasible gate, choose the one

with maximum idle time after the previous flight is assigned

to the same gate. Repeat this until all flights are checked.

If the flight cannot be assigned to any gate feasibly in this

way, the fight is then assigned to a remote apron stand.

3) Calculate and return the objective value of the feasible

chromosome.

5.3 Genetic operations

Fig. 4 illustrates the major steps of the solution process

we have used in this paper. The population evolves and the

fitness improves in general from generation to generation.

After certain number of generations, the results are more

likely to approach an optimal or near optimal solution.

Selection. Selection provides the driving force in a ge-

netic algorithm. The Roulette Wheel method is adopted as

the fitness proportionate selection operator here, such that

chromosomes with better fitness (smaller objective value

for our minimization problem) will have higher chance to

be selected. Using this method, two chromosomes are se-
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lected each time to produce offspring through crossover and

mutation for the next generation. Repeating the process,

we will obtain a new population of chromosomes. To pre-

vent best chromosomes from being destroyed at crossover

and mutation, some best chromosomes in the current pop-

ulation are chosen to substitute the worst chromosomes in

the offspring population. The number of best chromosomes

chosen for this is relatively small to avoid them dominating

the selection process.

Fig. 4 Flow chart of the solution method

Crossover. Crossover and mutation are common

GA operators. Crossover operates on two chromosomes

at a time and generates offspring by combining both

chromosomes′ features. One-point crossover method is

adopted in the paper. A random point i is first gener-

ated where i < N . Then, the parts to the right of bit i

of the two parents are exchanged to generate two offspring

chromosomes.

Mutation. A random exchange method is adopted to

implement the operator. Each chromosome has a small

probability (mutation rate) for mutation. If a random gen-

erated number is smaller than the predetermined mutation

rate, then the current chromosome will participate in the

mutation operation, otherwise it will not. Moreover, the

specific mutating genes are randomly chosen from the chro-

mosome and their values will be replaced by a different gate

number randomly chosen from those feasible for that flight.

6 Testing results

In this section, the genetic algorithm is first used to solve

an illustrative example to show the effectiveness of the al-

gorithm and the effect of considering the safety constraints

in the model. The algorithm performance is further tested

using data of one terminal from PEK airport.

6.1 An illustrative example and test on
problems of different sizes

Table 1 shows an example set of test data containing

40 flights to be assigned to 10 gates (7 large gates and

3 medium gates) and an extra un-gated apron stand in

one day operation between 8:00 am and 8:00 pm. However,

in the initial stage, the test focuses on the effect of the

safety constraints and the over-constrained situation is not

considered[26], which means that the gate resource is enough

for all the flights considered in the assignment without using

the remote apron stand. In practice, remote apron stand

often needs to be used. In [13, 14], the un-gated area is

regarded as one point with unlimited capacity whose use

should be minimized rather than being considered with its

own configuration. Different resource constraint levels will

be considered in later tests.

The buffer times α and β are chosen as 5 and 15min,

respectively. The parameters of GA are set as follows:

Population size: 20

Crossover probability: 0.9

Mutation probability: 0.05

Maximum generation: 200.

The results of flight-to-gate assignment with and without

considering the safety constraints are presented in Figs. 5

and 6, respectively. According to the test data, flights 35

and 37 have exactly the same departure time. In Fig. 5,

these two flights are assigned to the adjacent gates 2 and 3

without considering safety constraint: the time difference of

their push-outs is obviously less than the minimum conflict

avoidance time α. The results also show another potential

hazard of push-out and taxi-in conflict between flights 31

and 34 with complete overlapping ground movement time

at time point 489. Similarly, this kind of conflict may also

happen on the assignments of flights 6 and 10, flights 18

and 23, flights 10 and 17, as well as flights 23 and 27, due

to the overlapping of their arrival or departure times shown

in Table 1.

The result in Fig. 6 has avoided flight conflict by the strict

constraints in the model: no two flights with overlapping

ground movement time are assigned to adjacent gates. We

can notice that because of this constraint, the gate assign-

ments of many other flights are also different.

After the initial stage of demonstrating the effect of con-

sidering safety constraints in our model, we use the algo-

rithm to solve more test problems with different sizes (num-

bers of gates and flights) and different resource constraint

levels (gates to flight ratios), as shown in Table 2. For each

scenario, we solve the problem 10 times and the experimen-

tal results are also shown in Table 2. The test is imple-

mented in Matlab R2013a and run on a computer with an

Intel (R) Core i7 2.4 GHz CPU and 16 GB memory. Most

of the parameters involved are the same as for the illustra-

tive example. The objective value of each group represents

the minimum objective value (dispersion of idle times and

penalty for using the remote apron stand), while the com-

putation time is the average of 10 runs.
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Table 1 Flight information for the illustrative example

Flight Arrival Departure Flight

number time (min) time (min) type

1 0 55 M

2 8 72 L

3 24 96 L

4 35 110 M

5 48 108 M

6 66 135 M

7 87 152 M

8 104 164 S

9 115 182 M

10 137 191 M

11 144 210 M

12 156 227 M

13 160 220 L

14 168 225 M

15 168 253 L

16 183 302 M

17 192 278 M

18 224 289 M

19 230 295 M

20 252 309 M

21 268 348 M

22 276 385 L

23 293 359 M

24 320 387 M

25 332 395 L

26 347 402 M

27 360 429 S

28 369 435 M

29 384 447 M

30 411 480 M

31 425 489 M

32 436 500 M

33 461 543 M

34 489 540 M

35 495 599 M

36 535 620 M

37 528 599 M

38 550 645 M

39 560 677 L

40 620 700 L

The results in Table 2 show that the GA can solve the

test problems efficiently in resource sufficient conditions.

For the problems with the same number of gates, as the

number of flights increases, the gate resources become more

constrained and the objective value in the result increases

as well. This reflects the fact that when the gate resources

Fig. 5 Gantt chart of gate assignment without safety constraints

Fig. 6 Gantt chart of gate assignment with safety constraints

Table 2 Objective values and computation times in different

scenarios

Gate/Flight Population Objective value Computation time

(min) (s)

10/30 50 180 306 200.8

10/40 50 254 127 390.2

10/50 50 493 382 462.5

15/45 50 91 480 343.3

15/60 50 164 508 937.3

15/75 50 272 241 1 017.6

20/60 100 115 013 1 040.7

20/80 100 151 447 1 856.2

20/100 100 175 621 2 016.9

are constrained, some of the flights have to be assigned to

the remote apron area due to the gate insufficiency, result-

ing in high penalties. As expected, with the problem size

increasing, the average computation time increases as well.
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6.2 Further testing of algorithm perfor-
mance

The experiment in this subsection is to test the algorithm

performance using real data. We collected flight data from

one terminal area of Beijing Capital International Airport

(PEK) in China. There are more than 110 flights arriving

and/or departing from the specific terminal area in a day.

The flights can be classified into either the overnight flights

or normal turn around ones during the day time. The major

types of aircrafts operating at the terminal include A319,

A333, A332, A320, B738, B763 and B788, which can be

classified as types C, D and E (small, medium and large)

according to the aircraft wingspan and the distance between

the outer edge of the main gear wheels[27]. There are 13

gates connected to the terminal building, only one suitable

for large aircraft as this is an old terminal. We use the

flight information as well as the real terminal configuration

in our experiments. According to the airport authority, the

buffer time is set to 30 min. Each part of the testing in this

experiment is also run for 10 times.

We first use small numbers of populations and max-

generation (20 and 50 respectively) to obtain the results

quickly and to observe the influence of the mutation rate

on the algorithm performance. Fig. 7 shows the test re-

sults using different mutation rates. The solid line in each

graph shows the average objective value in each generation,

while the dashed line presents the best objective value up

to each generation. Clearly, the solid curves in all the 3

graphs of Fig. 7 have presented a declined trend in the ini-

tial iterations. Then, the result in Fig. 7 (a) shows a fast

convergence. However, the best value achieved in Fig. 7 (a)

is still higher than those in Figs. 7 (b) and 7 (c). When

the mutation rate is equal to 0.1, it can be seen that the

best objective value still improves after many generations in

Fig. 7 (c). However, the evolution process is not very stable.

In general, the mutation operation in genetic algorithm

can help maintain the diversity of solutions and help avoid-

ing premature convergence. Too small mutation rate may

not achieve the purpose. However, if the mutation rate is

set too large, it will be difficult for the features of good so-

lutions to be passed to the next generations and solutions

generated will be quite random. Based on the result, we set

the mutation rate to 0.05 in further experiment.

We then enlarge the population size and max-generation

providing sufficient time for the algorithm to converge. The

evolution processes with different values of these parame-

ters are shown in Fig. 8 (a)–8 (c). With the parameters set

large, the result in Fig. 8 (c) has the minimum objective

value among the three, and the diagram also indicates that

the result may be further improved if iteration continues.

However, with this parameter setting, the algorithm also re-

quires significantly longer time to run. In application, when

choosing an algorithm and its parameter setting, both com-

putational efficiency and solution quality have to be consid-

ered.

Fig. 7 The process of GA with different mutation rates

In the experiment, we assume that once an aircraft is

assigned to a gate, it stays there until the end of the day,

or before it departs on the next scheduled day. If the time

between the arrival of an aircraft and its departure is very

long, then towing it away from the gate to the remote apron

area after disembarking and then towing it back to a gate

before embarking could make the local gate area more effi-

ciently utilized. However, the towing procedure may cause

potential conflict problem. Therefore, in practice, the air-

port would often rather let such aircraft stay at the pre-

assigned gate than towing it away and then towing it back

before it departs.

6.3 Allocation of parking positions at
nearby apron area

Test results in Section 6.1 show that when the number of

flights is around 100, at least 20 gates will be needed to
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Fig. 8 The GA performance of different scenarios

serve them. For the set of data collected and used in Section

6.2, there are more than 110 flights. The terminal is an

old one with only 13 gates connected with the terminal

building and only one of them can handle large aircrafts.

Therefore, though the result in Section 6.2 achieved high

utilisation of the gates, a large number of flights still have

to be allocated to apron stands. Fortunately, there are 10

parking positions near this terminal which are dedicated

for flights at this terminal to use. Each of them also has a

limit on the types of aircrafts that can be parked. These

parking positions are next to each other and so the safety

rules are also applicable to them. Therefore, the allocation

of aircrafts to each of these positions needs to be explicitly

specified considering the safety rules.

After the allocation of aircrafts to the 13 gates, as a step

further, we solve the problem of allocating the remaining

aircrafts to these 10 nearby parking positions using the

same method. Those that still cannot be handled will be

allocated to remote apron area. The final allocation result

is shown in Fig. 9.

Fig. 9 Gantt chart showing the assignment of gates and nearby

parking positions

In Fig. 9, the 10 nearby parking positions are marked

as gates 14–23. Gate 24 represents the remote apron area

which has no capacity restrictions. As can be seen from

Fig. 9, the remote apron stand is used to deal with the peak

time in the morning (0–400 min) for the overnight flights de-

parting. It is worth noting that the aircraft for flight 42 with

long stay time is actually of small type. Allocating it to an

un-gated parking position frees normal gate resources for

more flights. Meanwhile, the blank area showed in Fig. 9

in parking positions 14 to 17, actually illustrates the re-

striction of flight-to-gate mismatching. Although there are

still 3 flights being assigned to the remote apron (marked

as gate 24) due to insufficient gate resources during peak

time, the assignment presented here already represents an

improvement.

7 Conclusions

In this paper, we have studied the airport gate as-

signment problem and modelled it considering safety con-

straints. To achieve robust assignment and better utilize

the gates, the objective function was set to minimize the

dispersion of idle time periods and the number of flights

assigned to remote apron stands. Genetic algorithm has

been used to solve this gate assignment problem. A uni-

fied feasibility checking function is applied to decode each

chromosome and generate a corresponding feasible solution

in the whole solution process. An illustrative example is
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used to show the running of the algorithm and the effect

of the safety constraints. Problem parameters were varied

to observe the algorithm performance on the problem with

different sizes and different resource constraint levels. The

algorithm performance is further demonstrated using data

of a terminal from PEK airport. The same method is also

used to obtain detailed allocation of the nearby parking

positions to the flights that could not be allocated to the

gates.
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Güleryüz. A stochastic neighborhood search approach for
airport gate assignment problem. Expert Systems with Ap-
plications, vol. 39, pp. 316–327, 2012.

[17] A. Bolat. Assigning arriving flights at an airport to the
available gates. Journal of the Operational Research Soci-
ety, vol. 50, no. 1, pp. 23–34, 1999.

[18] A. Bolat. Procedures for providing robust gate assignments
for arriving aircrafts. European Journal of Operational Re-
search, vol. 120, no. 1, pp. 63–80, 2000.

[19] A. Bolat. Models and a genetic algorithm for static aircraft-
gate assignment problem. Journal of the Operational Re-
search Society, vol. 52, no. 10, pp. 1107–1120, 2001.

[20] S. Y. Yan, C. Y. Shieh, M. Chen. A simulation framework
for evaluating airport gate assignments. Transportation Re-
search Part A: Policy and Practice, vol. 36, no. 10, pp. 885–
898, 2002.

[21] C. Y. Liu, N. J. Zhai. On multi-objective optimization of
airport gate assignment with push-out conflict avoidance. In
Proceedings of the 29th Chinese Control Conference, IEEE,
Beijing, China, pp. 1802–1806, 2010.

[22] J. A. D. Atkin, E. K. Burke, S. Ravizza. A more realistic
approach for airport ground movement optimisation with
stand holding. In Proceedings of the 5th Multidisciplinary
International Conference on Scheduling: Theory and Ap-
plications, Phoenix, USA, 2011.

[23] S. H. Kim, E. Feron. Impact of gate assignment on gate-
holding departure control strategies. In Proceedings of the
IEEE/AIAA 31st Digital Avionics Systems Conference,
IEEE, Williamsburg, USA, pp. 4E3-1–4E3-8, 2012.

[24] U. M. Neuman, J. A. D. Atkin. Airport gate assignment
considering ground movement. Computational Logistics,
vol. 8197, pp. 184–198, 2013.

[25] EUROCONTROL. Annual Safety Report, Safety Regula-
tion Commission, ATM Safety Performance 2013, 2014.

[26] S. Liu, W. H. Chen, J. Y. Liu. Optimizing airport gate
assignment with operational safety constraints. In Proceed-
ings of the 20th International Conference on Automation &
Computing, IEEE, Cranfield, Bedfordshire, UK, pp. 61–66,
2014.

[27] AIRBUS. Characteristics and maintenance planning. Tech-
nical Data Support and Services, Blagnac Cedex, France,
2005.



S. Liu et al. / Robust Assignment of Airport Gates with Operational Safety Constraints 41

Shuo Liu graduated from Kunming Uni-
versity of Science and Technology, China in
2008. She received the M. Sc. degree in con-
trol systems from University of Sheffield,
UK in 2010. She is currently a Ph. D. de-
gree candidate at Department of Aeronau-
tical and Automotive Engineering, Lough-
borough University, UK.

Her research interests include opera-
tional research, optimisation and decision making support in air
traffic management.

E-mail: s.liu@lboro.ac.uk (Corresponding author)
ORCID iD: 0000-0002-9782-182X

Wen-Hua Chen received the M. Sc. and
Ph.D. degrees from Northeast University,
China in 1989 and 1991, respectively. From
1991 to 1996, he was a lecturer and then
an associate professor with the Department
of Automatic Control, Nanjing University
of Aeronautics and Astronautics, China.
From 1997 to 2000, he held a research posi-
tion and then was a lecturer in control en-

gineering with the Centre for Systems and Control, University
of Glasgow, UK. In 2002, he moved to the Department of Aero-
nautical and Automotive Engineering, Loughborough University,
UK, as a Lecturer, where he was appointed as a professor in 2012.
He is a senior member of IEEE and a Fellow of Institution of En-
gineering and Technology.

His research interests include the development of advanced
control strategies (nonlinear model predictive control, distur-
bance observer based control, etc.) and their applications in
aerospace engineering. Currently, much of his work also involves
the development of unmanned autonomous intelligent systems.

E-mail: w.chen@lboro.ac.uk

Jiyin Liu received the Ph. D. degree in
manufacturing engineering and operations
management from University of Notting-
ham, UK, and the B. Eng. degree in indus-
trial automation and M.Eng. degree in sys-
tems engineering from Northeastern Uni-
versity, China. He is a professor of oper-
ations management in the School of Busi-
ness and Economics at Loughborough Uni-

versity, UK. He previously taught at Northeastern University and
The Hong Kong University of Science and Technology, China.
He has published papers in various academic journals, such as
European Journal of Operational Research, IEEE Transactions,
IIE Transactions, International Journal of Production Research,
Journal of the Operational Research Society, Naval Research Lo-
gistics, Operations Research and Transportation Research.

His research interests include operations planning and schedul-
ing in production and logistics, as well as modeling, analysis, and
solution of practical operations problems.

E-mail: j.y.liu@lboro.ac.uk


