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Task-resource Scheduling Problem
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Abstract: Cloud computing is a new and rapidly emerging computing paradigm where applications, data and IT services are
provided over the Internet. The task-resource management is the key role in cloud computing systems. Task-resource scheduling
problems are premier which relate to the efficiency of the whole cloud computing facilities. Task-resource scheduling problem is NP-
complete. In this paper, we consider an approach to solve this problem optimally. This approach is based on constructing a logical
model for the problem. Using this model, we can apply algorithms for the satisfiability problem (SAT) to solve the task-resource
scheduling problem. Also, this model allows us to create a testbed for particle swarm optimization algorithms for scheduling workflows.
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1 Introduction

Problems of cloud computing are among the most rapidly
developing areas of modern computer science[1−4]. Cloud
computing is a rapidly emerging paradigm for distributed
computing that delivers infrastructure, platform, and soft-
ware as services. Such services are made available as
subscription-based services in a pay-as-you-go model to
consumers[5, 6]. When the user application requires com-
puting resources, cloud computing helps user applications
dynamically provision as many computing resources at
specified locations as required. Usually, scientific work-
flows need to process huge amount of data and computa-
tionally intensive activities. Scientific workflow manage-
ment systems are used for managing these scientific ex-
periments by hiding the orchestration and inherent inte-
gration details while executing workflows on distributed
resources provided by cloud service providers[7]. In this
paper, we consider a problem of minimizing the total
execution cost of applications on these resources pro-
vided by cloud service providers, such as Amazon and
GoGrid[8, 9]. In particular, we consider the task-resource
scheduling problem. This problem is NP-complete[10].
However, past work has proposed many heuristics based
approaches to scheduling workflow applications[11−35]. In
particular, genetic algorithms[12, 18, 19, 22, 27, 31−33, 35], sim-
ulated annealing[24, 30], tabu search[14], stochastic inte-
ger programming[16], and particle swarm optimization
algorithms[25, 26, 28, 34] have been used for scheduling work-
flows. A good survey of such workflow scheduling algo-
rithms for grid computing is given in [33]. Note that in
several works, some relatively simple models of schedulers
are considered. For instance, an approach based on ge-
netic algorithm for scheduling only decomposable data grid
applications is considered in [19]. Two models based on
genetic algorithm for predicting only the completion time
of jobs in a service grid are proposed in [18]. However,
in most studies, multi-objective problems are considered.
For example, security-driven heuristics and a fast genetic
algorithm are proposed in [27]. The design, implementa-
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tion and test results for a scheduler based on genetic algo-
rithm are presented in [12]. The scheduler allows to min-
imize make-span, idle time of the available computational
resources, turn-around time and the specified deadlines pro-
vided by users. Some schedulers based on genetic algorithm
for heterogeneous computing environments are considered
in [22, 23]. In this paper, we consider one of the most recent
and general models which was proposed in [25]. Note that
heuristic approaches[11−35] to scheduling workflow applica-
tions give us only suboptimal algorithms. Consequently,
exhaustive searches were used to verify the quality of such
approaches[31].

In this paper, we describe an approach to solve this prob-
lem optimally. In Section 2, we consider the problem of
finding a task-resource mapping. In particular, we consider
instances such that the highest cost among all the comput-
ing resources is minimized. Also, we consider instances such
that the cost of all the computing resources is minimized.
For these problems, we construct reductions to satisfiabil-
ity problem and 3-satisfiability problem in Section 3. Data
for computational experiments is considered in Section 4.
In Section 5, we propose a SAT solver based on genetic
algorithm. This algorithm allows us to solve considered
scheduling problems optimally. In Section 6, we use this
algorithm as the testbed for particle swarm optimization
algorithm.

2 Problem definition

We can consider an application workflow as a directed
acyclic graph represented by G = (V, E), where

V = {T1, T2, · · · , Tn}
is the set of tasks, and

E ⊆ {(Ti, Tj) | Ti, Tj ∈ V }
represents the data dependencies between these tasks. In
particular, we suppose that (Ti, Tj) ∈ E if and only if the
data is produced by Ti and consumed by Tj . Suppose that

P = {P1, P2, · · · , Pq}
is a set of compute sites. We can suppose that the average
computation time of a task Ti on a computing resource Pj
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for a certain size of input is known. In this case, the cost
of computation of a task on a compute host is inversely
proportional to the time it takes for computation on that
resource. Let w[i, j] be the cost of computation of a task Ti

on a compute host Pj . Also, we can suppose that the cost of
unit data access d[i, j] from a resource Pi to a resource Pj is
known. The cost of access is fixed by the service provider.
Note that the transfer cost can be calculated according to
the bandwidth between the sites. However, following [25],
we have used the cost for transferring unit data between
sites, per second. Also, following [25], we assume that these
costs are non-negative, symmetric, and satisfy the triangle
inequality:

d[i, j] > 0

d[i, j] = d[j, i]

d[i, j] + d[j, l] > d[i, l]

for all i, j, l. Suppose that two tasks Ti1 and Ti2 have file
dependency between them. Let e[i1, i2] be the output file
size from Ti1 to Ti2 . Let M be a task-resource mapping
instance.

For a given assignment M , the total cost CTj(M) for a
computing resource Pj is the sum of execution cost CEj(M)
and access cost CAj(M).

Now, the problem of task-resource scheduling can be
stated as:

TRS HCR: Find a task-resource mapping instance M ,
such that when estimating the total cost incurred using
each computing resource Pj , the highest cost among all the
computing resources is minimized.

Subsequent minimization of the overall cost is

MH = min
M

max
Pj

CTj(M)

where
CTj(M) = CEj(M) + CAj(M)

CAj(M) =
∑

Ts∈V,Tt∈V,M(Ts)=Pj ,M(Tt)=Pl 6=Pj

d[j, l]e[s, t]

CEj(M) =
∑

M(Ts)=Pj

w[s, j].

This minimization ensures that the total cost is minimal
even after initial distribution.

We also consider the following problem:
TRS OCR: Find a task-resource mapping instance M ,

such that when estimating the total cost incurred using
each computing resource Pj , the cost of all the computing
resources is minimized.

Subsequent minimization of the overall cost

MO = min
M

∑
Pj

CTj(M).

3 Logical models of TRS HCR and
TRS OCR

The problem SAT is to determine whether the variables
of a given Boolean function in conjunctive normal form
(CNF) have an assignment that makes the function “true”.
Different variants of SAT were considered. Note that the

problem SAT remains NP-complete even if all expressions
are written in conjunctive normal form with 3 variables per
clause (3-CNF). The problem 3SAT is to determine whether
the variables of a given 3-CNF have an assignment that
makes the function “true”.

The satisfiability problem is fundamental in solving many
problems in automated reasoning, computer-aided design,
computer-aided manufacturing, machine vision, database,
robotics, integrated circuit design, computer architecture
design, and computer network design. In recent years, many
optimization methods, parallel algorithms, and practical
techniques have been developed for solving the satisfiability
problem[36].

It is natural to use a reduction to different vari-
ants of the satisfiability problem to solve computation-
ally hard problems. Encoding problems as Boolean sat-
isfiability and solving them with very efficient satisfia-
bility algorithms have recently caused considerable inter-
est. There are several ways of SAT-encoding constraint
satisfaction[37−40], clique[41], planning[42−44], some ver-
sions of scheduling[45−49], coloring[41, 50], the Hamiltonian
cycle[41, 50], and some robotic problems[51−54].

A toolbox for Matlab TORSCHE Scheduling[55, 56] con-
tains a number of scheduling algorithms. TORSCHE
Scheduling deals with scheduling on monoprocessor, ded-
icated processors, parallel processors and with cyclic
scheduling. In TORSCHE Scheduling, scheduling algo-
rithms are categorized by notation α, β, and γ[57, 58]. In
particular, in TORSCHE Scheduling, the SAT based ap-
proach to the scheduling problems is considered. In the
toolbox a zChaff, SAT solver[59] is used to decide whether
the set of clauses is satisfiable. If it is satisfiable, the sched-
ule within s time units is feasible. After this, an optimal
schedule is found in iterative manner. The list scheduling
algorithm is used to find the initial value of s. Then value
of s is iteratively decremented by one and feasibility of the
solution is tested. When the solution is not feasible, the
iterative algorithm finishes. Note that zChaff can be used
to solve the problems with more than one million variables
and 10 million clauses.

In this paper, we consider reductions from TRS HCR and
TRS OCR to SAT and 3SAT.

The decision version of TRS HCR can be formulated as
following.

TRS HCR D:
Instance: Given a positive integer R, nonnegative inte-

gers d[j, l], e[s, t], w[s, j], a set P = {P1, P2, · · · , Pq}, and a
directed acyclic graph represented by G = (V, E), where

V = {T1, T2, · · · , Tn}

E ⊆ {(Ti, Tj) | Ti, Tj ∈ V }
1 6 j 6 q, 1 6 l 6 q, 1 6 s 6 n, 1 6 t 6 n.

Question: Is there a mapping M : T → P such that

max
Pj

CTj(M) 6 R ?

Respectively, the decision version of TRS OCR can be
formulated as follows.

TRS OCR D:



A. Gorbenko and V. Popov / Task-resource Scheduling Problem 431

Instance: Given an instance of TRS HCR D.
Question: Is there a mapping M : T → P such that

∑
Pj

CTj(M) 6 R ?

Let

r1 = max
16s6n,16j6q

dlog w[s, j]e+ 1

r2 = max
16j6q,16l6q

dlog d[j, l]e+ 1

r3 = max
16s6n,16t6n

dlog e[s, t]e+ 1

r = (n2 + q2)max{r1, r2 + r3}.
Suppose that

w[s, j] = a[s, j, r]a[s, j, r − 1] · · · a[s, j, 1],

d[j, l]e[s, t] = b[j, l, s, t, r]b[j, l, s, t, r − 1] · · · b[j, l, s, t, 1],

R = R[r]R[r − 1] · · ·R[1]

where

1 6 j 6 q, 1 6 l 6 q,

1 6 s 6 n, 1 6 t 6 n,

a[s, j, c] ∈ {0, 1}, b[j, l, s, t, c] ∈ {0, 1},
R[c] ∈ {0, 1}, 1 6 c 6 r.

Let

ϕ[s, 1] = ∨16j6qx[s, j],

ϕ[s, 2] = ∧16j[1]<j[2]6q(¬x[s, j[1]] ∨ ¬x[s, j[2]]),

ϕ = ∧16s6n(ϕ[s, 1] ∧ ϕ[s, 2]),

δ[1] = ∧16j6q,16c6r¬y1[0, j, c],

δ[2] = ∧16s6n,16j6q¬u1[s, j, 0],

ψ[1, j] = ∧16s6n,16c6r(x[s, j] →
((y1[s− 1, j, c] ∧ a[s, j, c] ∧ u1[s, j, c− 1]) →
(y1[s, j, c] ∧ u1[s, j, c]))),

ψ[2, j] = ∧16s6n,16c6r(x[s, j] →
(¬y1[s− 1, j, c] ∧ a[s, j, c] ∧ u1[s, j, c− 1]) →
(¬y1[s, j, c] ∧ u1[s, j, c]))),

ψ[3, j] = ∧16s6n,16c6r(x[s, j] →
((y1[s− 1, j, c] ∧ ¬a[s, j, c] ∧ u1[s, j, c− 1]) →
(¬y1[s, j, c] ∧ u1[s, j, c]))),

ψ[4, j] = ∧16s6n,16c6r(x[s, j] →
((y1[s− 1, j, c] ∧ a[s, j, c] ∧ ¬u1[s, j, c− 1]) →
(¬y1[s, j, c] ∧ u1[s, j, c]))),

ψ[5, j] = ∧16s6n,16c6r(x[s, j] →
((y1[s− 1, j, c] ∧ ¬a[s, j, c] ∧ ¬u1[s, j, c− 1]) →
(y1[s, j, c] ∧ ¬u1[s, j, c]))),

ψ[6, j] = ∧16s6n,16c6r(x[s, j] →
((¬y1[s− 1, j, c] ∧ a[s, j, c] ∧ ¬u1[s, j, c− 1]) →
(y1[s, j, c] ∧ ¬u1[s, j, c]))),

ψ[7, j] = ∧16s6n,16c6r(x[s, j] →
((¬y1[s− 1, j, c] ∧ ¬a[s, j, c] ∧ u1[s, j, c− 1]) →
(y1[s, j, c] ∧ ¬u1[s, j, c]))),

ψ[8, j] = ∧16s6n,16c6r(x[s, j] →
((¬y1[s− 1, j, c] ∧ ¬a[s, j, c] ∧ ¬u1[s, j, c− 1]) →
(¬y1[s, j, c] ∧ ¬u1[s, j, c]))),

ψ[9, j] = ∧16s6n,16c6r(¬x[s, j] →
((y1[s− 1, j, c] ∧ u1[s, j, c− 1]) →
(¬y1[s, j, c] ∧ u1[s, j, c]))),

ψ[10, j] = ∧16s6n,16c6r(¬x[s, j] →
((¬y1[s− 1, j, c] ∧ u1[s, j, c− 1]) →
(y1[s, j, c] ∧ ¬u1[s, j, c]))),

ψ[11, j] = ∧16s6n,16c6r(¬x[s, j] →
((y1[s− 1, j, c] ∧ ¬u1[s, j, c− 1]) →
(y1[s, j, c] ∧ ¬u1[s, j, c]))),

ψ[12, j] = ∧16s6n,16c6r(¬x[s, j] →
((¬y1[s− 1, j, c] ∧ ¬u1[s, j, c− 1]) →
(¬y1[s, j, c] ∧ ¬u1[s, j, c]))),

ψ[j] = ∧12
i=1ψ[i, j],

ψ = ∧16j6qψ[j],

δ[3] = ∧16c6r¬y2[n, 0, c],

δ[4] = ∧16j6q¬u2[n, j, 0],

ε[1] = ∧16j6q,16c6r((y2[n, j − 1, c]∧
y1[n, j, c] ∧ u2[n, j, c− 1]) →
(y2[n, j, c] ∧ u2[n, j, c])),

ε[2] = ∧16j6q,16c6r((¬y2[n, j − 1, c]∧
y1[n, j, c] ∧ u2[n, j, c− 1]) →
(¬y2[n, j, c] ∧ u2[n, j, c])),

ε[3] = ∧16j6q,16c6r((y2[n, j − 1, c]∧
¬y1[n, j, c] ∧ u2[n, j, c− 1]) →
(¬y2[n, j, c] ∧ u2[n, j, c])),

ε[4] = ∧16j6q,16c6r((y2[n, j − 1, c]∧
y1[n, j, c] ∧ ¬u2[n, j, c− 1]) →
(¬y2[n, j, c] ∧ u2[n, j, c])),

ε[5] = ∧16j6q,16c6r((¬y2[n, j − 1, c]∧
¬y1[n, j, c] ∧ u2[n, j, c− 1]) →
(y2[n, j, c] ∧ ¬u2[n, j, c])),
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ε[6] = ∧16j6q,16c6r((¬y2[n, j − 1, c]∧
y1[n, j, c] ∧ ¬u2[n, j, c− 1]) →
(y2[n, j, c] ∧ ¬u2[n, j, c])),

ε[7] = ∧16j6q,16c6r((y2[n, j − 1, c]∧
¬y1[n, j, c] ∧ ¬u2[n, j, c− 1]) →
(y2[n, j, c] ∧ ¬u2[n, j, c])),

ε[8] = ∧16j6q,16c6r((¬y2[n, j − 1, c]∧
¬y1[n, j, c] ∧ ¬u2[n, j, c− 1]) →
(¬y2[n, j, c] ∧ ¬u2[n, j, c])),

ε = ∧8
i=1ε[i],

δ[5] = ∧16j6q,16l6q,16s6n,16c6r¬z1[j, l, s, 0, c],

δ[6] = ∧16j6q,16l6q,16s6n,16t6n¬v1[j, l, s, t, 0],

ρ[1, j, s, l] = ∧16t6n,l6=j,16c6r((x[s, j] ∧ x[t, l]) →
((z1[j, l, s, t− 1, c] ∧ b[j, l, s, t, c] ∧ v1[j, l, s, t, c− 1]) →
(z1[j, l, s, t, c] ∧ v1[j, l, s, t, c]))),

ρ[2, j, s, l] = ∧16t6n,l6=j,16c6r((x[s, j] ∧ x[t, l]) →
((¬z1[j, l, s, t− 1, c] ∧ b[j, l, s, t, c] ∧ v1[j, l, s, t, c− 1]) →
(¬z1[j, l, s, t, c] ∧ v1[j, l, s, t, c]))),

ρ[3, j, s, l] = ∧16t6n,l6=j,16c6r((x[s, j] ∧ x[t, l]) →
((z1[j, l, s, t− 1, c] ∧ ¬b[j, l, s, t, c] ∧ v1[j, l, s, t, c− 1]) →
(¬z1[j, l, s, t, c] ∧ v1[j, l, s, t, c]))),

ρ[4, j, s, l] = ∧16t6n,l6=j,16c6r((x[s, j] ∧ x[t, l]) →
((z1[j, l, s, t− 1, c] ∧ b[j, l, s, t, c] ∧ ¬v1[j, l, s, t, c− 1]) →
(¬z1[j, l, s, t, c] ∧ v1[j, l, s, t, c]))),

ρ[5, j, s, l] = ∧16t6n,l6=j,16c6r((x[s, j] ∧ x[t, l]) →
((¬z1[j, l, s, t− 1, c] ∧ ¬b[j, l, s, t, c] ∧ v1[j, l, s, t, c− 1]) →
(z1[j, l, s, t, c] ∧ ¬v1[j, l, s, t, c]))),

ρ[6, j, s, l] = ∧16t6n,l6=j,16c6r((x[s, j] ∧ x[t, l]) →
((¬z1[j, l, s, t− 1, c] ∧ b[j, l, s, t, c] ∧ ¬v1[j, l, s, t, c− 1]) →
(z1[j, l, s, t, c] ∧ ¬v1[j, l, s, t, c]))),

ρ[7, j, s, l] = ∧16t6n,l6=j,16c6r((x[s, j] ∧ x[t, l]) →
((z1[j, l, s, t− 1, c] ∧ ¬b[j, l, s, t, c] ∧ ¬v1[j, l, s, t, c− 1]) →
(z1[j, l, s, t, c] ∧ ¬v1[j, l, s, t, c]))),

ρ[8, j, s, l] = ∧16t6n,l6=j,16c6r((x[s, j] ∧ x[t, l]) →
((¬z1[j, l, s, t− 1, c] ∧ ¬b[j, l, s, t, c] ∧ ¬v1[j, l, s, t, c− 1]) →
(¬z1[j, l, s, t, c] ∧ ¬v1[j, l, s, t, c]))),

ρ[9, j, s, l] = ∧16t6n,16c6r((¬x[s, j] ∨ ¬x[t, l]) →
((z1[j, l, s, t− 1, c] ∧ v1[j, l, s, t, c− 1]) →
(¬z1[j, l, s, t, c] ∧ v1[j, l, s, t, c]))),

ρ[10, j, s, l] = ∧16t6n,16c6r((¬x[s, j] ∨ ¬x[t, l]) →
((¬z1[j, l, s, t− 1, c] ∧ v1[j, l, s, t, c− 1]) →
(z1[j, l, s, t, c] ∧ ¬v1[j, l, s, t, c]))),

ρ[11, j, s, l] = ∧16t6n,16c6r((¬x[s, j] ∨ ¬x[t, l]) →
((z1[j, l, s, t− 1, c] ∧ ¬v1[j, l, s, t, c− 1]) →
(z1[j, l, s, t, c] ∧ ¬v1[j, l, s, t, c]))),

ρ[12, j, s, l] = ∧16t6n,16c6r((¬x[s, j] ∨ ¬x[t, l]) →
((¬z1[j, l, s, t− 1, c] ∧ ¬v1[j, l, s, t, c− 1]) →
(¬z1[j, l, s, t, c] ∧ ¬v1[j, l, s, t, c]))),

ρ[13, j, s, l] = ∧16t6n,l=j,16c6r((x[s, j] ∧ x[t, l]) →
((z1[j, l, s, t− 1, c] ∧ v1[j, l, s, t, c− 1]) →
(¬z1[j, l, s, t, c] ∧ v1[j, l, s, t, c]))),

ρ[14, j, s, l] = ∧16t6n,l=j,16c6r((x[s, j] ∧ x[t, l]) →
((¬z1[j, l, s, t− 1, c] ∧ v1[j, l, s, t, c− 1]) →
(z1[j, l, s, t, c] ∧ ¬v1[j, l, s, t, c]))),

ρ[15, j, s, l] = ∧16t6n,l=j,16c6r((x[s, j] ∧ x[t, l]) →
((z1[j, l, s, t− 1, c] ∧ ¬v1[j, l, s, t, c− 1]) →
(z1[j, l, s, t, c] ∧ ¬v1[j, l, s, t, c]))),

ρ[16, j, s, l] = ∧16t6n,l=j,16c6r((x[s, j] ∧ x[t, l]) →
((¬z1[j, l, s, t− 1, c] ∧ ¬v1[j, l, s, t, c− 1]) →
(¬z1[j, l, s, t, c] ∧ ¬v1[j, l, s, t, c]))),

δ[7] = ∧16j6q,16s6n,16c6r¬z2[j, 0, s, n, c],

δ[8] = ∧16j6q,16l6q,16s6n¬v2[j, l, s, n, 0],

ρ[17, j, s] = ∧16l6q,l6=j,16c6r(x[s, j] →
((z2[j, l − 1, s, n, c] ∧ z1[j, l, s, n, c] ∧ v2[j, l, s, n, c− 1]) →
(z2[j, l, s, n, c] ∧ v2[j, l, s, n, c]))),

ρ[18, j, s] = ∧16l6q,l6=j,16c6r(x[s, j] →
((¬z2[j, l − 1, s, n, c] ∧ z1[j, l, s, n, c] ∧ v2[j, l, s, n, c− 1]) →
(¬z2[j, l, s, n, c] ∧ v2[j, l, s, n, c]))),

ρ[19, j, s] = ∧16l6q,l6=j,16c6r(x[s, j] →
((z2[j, l − 1, s, n, c] ∧ ¬z1[j, l, s, n, c] ∧ v2[j, l, s, n, c− 1]) →
(¬z2[j, l, s, n, c] ∧ v2[j, l, s, n, c]))),

ρ[20, j, s] = ∧16l6q,l6=j,16c6r(x[s, j] →
((z2[j, l − 1, s, n, c] ∧ z1[j, l, s, n, c] ∧ ¬v2[j, l, s, n, c− 1]) →
(¬z2[j, l, s, n, c] ∧ v2[j, l, s, n, c]))),

ρ[21, j, s] = ∧16l6q,l6=j,16c6r(x[s, j] →
((¬z2[j, l − 1, s, n, c] ∧ ¬z1[j, l, s, n, c] ∧ v2[j, l, s, n, c− 1]) →
(z2[j, l, s, n, c] ∧ ¬v2[j, l, s, n, c]))),
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ρ[22, j, s] = ∧16l6q,l6=j,16c6r(x[s, j] →
((¬z2[j, l − 1, s, n, c] ∧ z1[j, l, s, n, c] ∧ ¬v2[j, l, s, n, c− 1]) →
(z2[j, l, s, n, c] ∧ ¬v2[j, l, s, n, c]))),

ρ[23, j, s] = ∧16l6q,l6=j,16c6r(x[s, j] →
((z2[j, l − 1, s, n, c] ∧ ¬z1[j, l, s, n, c] ∧ ¬v2[j, l, s, n, c− 1]) →
(z2[j, l, s, n, c] ∧ ¬v2[j, l, s, n, c]))),

ρ[24, j, s] = ∧16l6q,l6=j,16c6r(x[s, j] →
((¬z2[j, l − 1, s, n, c] ∧ ¬z1[j, l, s, n, c] ∧ ¬v2[j, l, s, n, c− 1]) →
(¬z2[j, l, s, n, c] ∧ ¬v2[j, l, s, n, c]))),

ρ[25, j, s] = ∧16l6q,l=j,16c6r(x[s, j] →
((z2[j, l − 1, s, n, c] ∧ v2[j, l, s, n, c− 1]) →
(¬z2[j, l, s, n, c] ∧ v2[j, l, s, n, c]))),

ρ[26, j, s] = ∧16l6q,l=j,16c6r(x[s, j] →
((¬z2[j, l − 1, s, n, c] ∧ v2[j, l, s, n, c− 1]) →
(z2[j, l, s, n, c] ∧ ¬v2[j, l, s, n, c]))),

ρ[27, j, s] = ∧16l6q,l=j,16c6r(x[s, j] →
((z2[j, l − 1, s, n, c] ∧ ¬v2[j, l, s, n, c− 1]) →
(z2[j, l, s, n, c] ∧ ¬v2[j, l, s, n, c]))),

ρ[28, j, s] = ∧16l6q,l=j,16c6r(x[s, j] →
((¬z2[j, l − 1, s, n, c] ∧ ¬v2[j, l, s, n, c− 1]) →
(¬z2[j, l, s, n, c] ∧ ¬v2[j, l, s, n, c]))),

ρ[29, j, s] = ∧16l6q,16c6r(¬x[s, j] →
((z2[j, l − 1, s, n, c] ∧ v2[j, l, s, n, c− 1]) →
(¬z2[j, l, s, n, c] ∧ v2[j, l, s, n, c]))),

ρ[30, j, s] = ∧16l6q,16c6r(¬x[s, j] →
((¬z2[j, l − 1, s, n, c] ∧ v2[j, l, s, n, c− 1]) →
(z2[j, l, s, n, c] ∧ ¬v2[j, l, s, n, c]))),

ρ[31, j, s] = ∧16l6q,16c6r(¬x[s, j] →
((z2[j, l − 1, s, n, c] ∧ ¬v2[j, l, s, n, c− 1]) →
(z2[j, l, s, n, c] ∧ ¬v2[j, l, s, n, c]))),

ρ[32, j, s] = ∧16l6q,16c6r(¬x[s, j] →
((¬z2[j, l − 1, s, n, c] ∧ ¬v2[j, l, s, n, c− 1]) →
(¬z2[j, l, s, n, c] ∧ ¬v2[j, l, s, n, c]))),

δ[9] = ∧16j6q,16c6r¬z3[j, q, 0, n, c],

δ[10] = ∧16j6q,16s6n¬v3[j, q, s, n, 0],

ρ[33, j] = ∧16s6n,16c6r(x[s, j] →
((z3[j, q, s− 1, n, c] ∧ z2[j, q, s, n, c] ∧ v3[j, q, s, n, c− 1]) →
(z3[j, q, s, n, c] ∧ v3[j, q, s, n, c]))),

ρ[34, j] = ∧16s6n,16c6r(x[s, j] →
((¬z3[j, q, s− 1, n, c] ∧ z2[j, q, s, n, c] ∧ v3[j, q, s, n, c− 1]) →
(¬z3[j, q, s, n, c] ∧ v3[j, q, s, n, c]))),

ρ[35, j] = ∧16s6n,16c6r(x[s, j] →
((z3[j, q, s− 1, n, c] ∧ ¬z2[j, q, s, n, c] ∧ v3[j, q, s, n, c− 1]) →
(¬z3[j, q, s, n, c] ∧ v3[j, q, s, n, c]))),

ρ[36, j] = ∧16s6n,16c6r(x[s, j] →
((z3[j, q, s− 1, n, c] ∧ z2[j, q, s, n, c] ∧ ¬v3[j, q, s, n, c− 1]) →
(¬z3[j, q, s, n, c] ∧ v3[j, q, s, n, c]))),

ρ[37, j] = ∧16s6n,16c6r(x[s, j] →
((¬z3[j, q, s− 1, n, c] ∧ ¬z2[j, q, s, n, c] ∧ v3[j, q, s, n, c− 1]) →
(z3[j, q, s, n, c] ∧ ¬v3[j, q, s, n, c]))),

ρ[38, j] = ∧16s6n,16c6r(x[s, j] →
((¬z3[j, q, s− 1, n, c] ∧ z2[j, q, s, n, c] ∧ ¬v3[j, q, s, n, c− 1]) →
(z3[j, q, s, n, c] ∧ ¬v3[j, q, s, n, c]))),

ρ[39, j] = ∧16s6n,16c6r(x[s, j] →
((z3[j, q, s− 1, n, c] ∧ ¬z2[j, q, s, n, c] ∧ ¬v3[j, q, s, n, c− 1]) →
(z3[j, q, s, n, c] ∧ ¬v3[j, q, s, n, c]))),

ρ[40, j] = ∧16s6n,16c6r(x[s, j] →
((¬z3[j, q, s− 1, n, c] ∧ ¬z2[j, q, s, n, c] ∧ ¬v3[j, q, s, n, c− 1]) →
(¬z3[j, q, s, n, c] ∧ ¬v3[j, q, s, n, c]))),

ρ[41, j] = ∧16s6n,16c6r(¬x[s, j] →
((z3[j, q, s− 1, n, c] ∧ v3[j, q, s, n, c− 1]) →
(¬z3[j, q, s, n, c] ∧ v3[j, q, s, n, c]))),

ρ[42, j] = ∧16s6n,16c6r(¬x[s, j] →
((¬z3[j, q, s− 1, n, c] ∧ v3[j, q, s, n, c− 1]) →
(z3[j, q, s, n, c] ∧ ¬v3[j, q, s, n, c]))),

ρ[43, j] = ∧16s6n,16c6r(¬x[s, j] →
((z3[j, q, s− 1, n, c] ∧ ¬v3[j, q, s, n, c− 1]) →
(z3[j, q, s, n, c] ∧ ¬v3[j, q, s, n, c]))),

ρ[44, j] = ∧16s6n,16c6r(¬x[s, j] →
((¬z3[j, q, s− 1, n, c] ∧ ¬v3[j, q, s, n, c− 1]) →
(¬z3[j, q, s, n, c] ∧ ¬v3[j, q, s, n, c]))),

δ[11] = ∧16c6r¬z4[0, q, n, n, c],

δ[12] = ∧16j6q¬v4[j, q, n, n, 0],

ρ[45] = ∧16j6q,16c6r((z4[j − 1, q, n, n, c]∧
z3[j, q, n, n, c] ∧ v4[j, q, n, n, c− 1]) →
(z4[j, q, n, n, c] ∧ v4[j, q, n, n, c])),
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ρ[46] = ∧16j6q,16c6r((¬z4[j − 1, q, n, n, c]∧
z3[j, q, n, n, c] ∧ v4[j, q, n, n, c− 1]) →
(¬z4[j, q, n, n, c] ∧ v4[j, q, n, n, c])),

ρ[47] = ∧16j6q,16c6r((z4[j − 1, q, n, n, c]∧
¬z3[j, q, n, n, c] ∧ v4[j, q, n, n, c− 1]) →
(¬z4[j, q, n, n, c] ∧ v4[j, q, n, n, c])),

ρ[48] = ∧16j6q,16c6r((z4[j − 1, q, n, n, c]∧
z3[j, q, n, n, c] ∧ ¬v4[j, q, n, n, c− 1]) →
(¬z4[j, q, n, n, c] ∧ v4[j, q, n, n, c])),

ρ[49] = ∧16j6q,16c6r((¬z4[j − 1, q, n, n, c]∧
¬z3[j, q, n, n, c] ∧ v4[j, q, n, n, c− 1]) →
(z4[j, q, n, n, c] ∧ ¬v4[j, q, n, n, c])),

ρ[50] = ∧16j6q,16c6r((¬z4[j − 1, q, n, n, c]∧
z3[j, q, n, n, c] ∧ ¬v4[j, q, n, n, c− 1]) →
(z4[j, q, n, n, c] ∧ ¬v4[j, q, n, n, c])),

ρ[51] = ∧16j6q,16c6r((z4[j − 1, q, n, n, c]∧
¬z3[j, q, n, n, c] ∧ ¬v4[j, q, n, n, c− 1]) →
(z4[j, q, n, n, c] ∧ ¬v4[j, q, n, n, c])),

ρ[52] = ∧16j6q,16c6r((¬z4[j − 1, q, n, n, c]∧
¬z3[j, q, n, n, c] ∧ ¬v4[j, q, n, n, c− 1]) →
(¬z4[j, q, n, n, c] ∧ ¬v4[j, q, n, n, c])),

ρ = (∧16i616,16s6n,16j6q,16l6qρ[i, j, s, l])∧
(∧176i632,16s6n,16j6qρ[i, j, s])∧
(∧336i644,16j6qρ[i, j]) ∧ (∧456i652ρ[i]),

δ[13] = ¬w[0],

τ [1] = ∧16c6r((y2[n, q, c] ∧ z4[q, q, n, n, c] ∧ w[c− 1]) →
(z[c] ∧ w[c])),

τ [2] = ∧16c6r((¬y2[n, q, c] ∧ z4[q, q, n, n, c] ∧ w[c− 1]) →
(¬z[c] ∧ w[c])),

τ [3] = ∧16c6r((y2[n, q, c] ∧ ¬z4[q, q, n, n, c] ∧ w[c− 1]) →
(¬z[c] ∧ w[c])),

τ [4] = ∧16c6r((y2[n, q, c] ∧ z4[q, q, n, n, c] ∧ ¬w[c− 1]) →
(¬z[c] ∧ w[c])),

τ [5] = ∧16c6r((¬y2[n, q, c] ∧ ¬z4[q, q, n, n, c] ∧ w[c− 1]) →
(z[c] ∧ ¬w[c])),

τ [6] = ∧16c6r((¬y2[n, q, c] ∧ z4[q, q, n, n, c] ∧ ¬w[c− 1]) →
(z[c] ∧ ¬w[c])),

τ [7] = ∧16c6r((y2[n, q, c] ∧ ¬z4[q, q, n, n, c] ∧ ¬w[c− 1]) →
(z[c] ∧ ¬w[c])),

τ [8] = ∧16c6r((¬y2[n, q, c] ∧ ¬z4[q, q, n, n, c] ∧ ¬w[c− 1]) →
(¬z[c] ∧ ¬w[c])),

τ = ∧8
i=1τ [i],

δ[14] = R1[r + 1] ∧ ¬R2[r + 1],

η[1] = ∧16c6r(R2[c + 1] → R2[c]),

η[2] = ∧16c6r((R[c] ∧ ¬z[c] ∧R1[c + 1]) → R2[c]),

η[3] = ∧16c6r((R[c] ∧ z[c] ∧R1[c + 1]) → R1[c]),

η[4] = ∧16c6r((¬R[c] ∧ ¬z[c] ∧R1[c + 1]) → R1[c]),

η[5] = ∧16c6r((¬R[c] ∧ z[c]) → ¬R1[c]),

η[6] = ∧16c6r(¬R1[c + 1] → ¬R1[c]),

η = ∧16i66η[i],

δ = ∧16i614δ[i],

ξ1 = ϕ ∧ ψ ∧ ε ∧ ρ ∧ τ ∧ η ∧ δ ∧ (R1[1] ∨R2[1]).

Theorem 1. Given an instance of TRS OCR D, there
is a mapping M : T → P such that

∑
Pj

CTj(M) 6 R

if and only if ξ1 is satisfiable.
Proof. Suppose that there is a mapping M : T → P

such that
∑

Pj
CTj(M) 6 R.

Let

x[s, j] = 1 ⇔ M(Ts) = Pj . (1)

By definition, for any s, there is j such that M(Ts) = Pj .
Respectively, for any s, there is j such that x[s, j] = 1.
Therefore, ϕ[s, 1] = 1 for any s. By definition, for any
s, there is only one value of j such that M(Ts) = Pj .
Respectively, for any s, there is only one value of j such
that x[s, j] = 1. Therefore, ϕ[s, 2] = 1 for any s. Since
ϕ[s, 1] = 1 and ϕ[s, 2] = 1 for any s, it is clear that ϕ = 1.

Let y1[0, j, c] = 0 and u1[s, j, 0] = 0 where

1 6 j 6 q, 1 6 c 6 r, 1 6 s 6 n.

It is easy to see that δ[1] = 1 and δ[2] = 1.
Let

Y1[s, j] =
∑

M(Ta)=Pj ,16f6s

w[f, j] (2)

Y1[s, j] = y1[s, j, r]y1[s, j, r − 1] · · · y1[s, j, 1], (3)

y1[s, j, c] ∈ {0, 1},
1 6 c 6 r.

Let

u1[f, j, c] = 1 (4)
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if and only if

y1[f − 1, j, c]y1[f − 1, j, c− 1] · · · y1[f − 1, j, 1]+

a[f, j, c]a[f, j, c− 1] · · · a[f, j, 1] =

y′1[f, j, c + 1]y1[f, j, c] · · · y1[f, j, 1] (5)

where

y1[s, j, f ] ∈ {0, 1}, 1 6 f 6 c, y′1[f, j, c + 1] = 1.

It is easy to check that ψ = 1.
Suppose that y2[n, 0, c] = 0, u2[n, j, 0] = 0. It is clear

that δ[3] = 1, δ[4] = 1. Let

y2[n, j, r]y2[n, j, r − 1] · · · y2[n, j, 1] =
∑

16f6j

CEf (M). (6)

It is easy to check that ε = 1.
Similarly, let

z1[j, l, s, 0, c] = 0, v1[j, l, s, t, 0] = 0,

z2[j, 0, s, n, c] = 0, v2[j, l, s, n, 0] = 0,

z3[j, q, 0, n, c] = 0, v3[j, q, s, n, 0] = 0,

z4[0, q, n, n, c] = 0, v4[j, q, n, n, 0] = 0, w[0] = 0,

z1[j, l, s, t, r]z1[j, l, s, t, r − 1] · · · z1[j, l, s, t, 1] =∑
16f6t,Ts∈V,Tf∈V,M(Ts)=Pj ,M(Tf )=Pl 6=Pj

d[j, l]e[s, f ] (7)

where s = const, l = const, j = const,

z2[j, l, s, n, r]z2[j, l, s, n, r − 1] · · · z2[j, l, s, n, 1] =∑
16t6n,16f6l,Ts∈V,Tt∈V,

M(Ts)=Pj ,M(Tt)=Pf 6=Pj

d[j, f ]e[s, t] (8)

where s = const, j = const,

z3[j, q, s, n, r]z3[j, q, s, n, r − 1] · · · z3[j, q, s, n, 1] =∑
16t6n,16l6q,16f6s,Tf∈V,Tt∈V,

M(Tf )=Pj ,M(Tt)=Pl 6=Pj

d[j, l]e[f, t] (9)

where j = const,

z4[j, q, n, n, r]z4[j, q, n, n, r − 1] · · · z4[j, q, n, n, 1] =∑

16f6j

CAf (M) (10)

z[r]z[r − 1] · · · z[1] =
∑
Pj

CTj(M). (11)

Suppose that

v1[j, l, s, f, c] = 1 (12)

if and only if

z1[j, l, s, f − 1, c]z1[j, l, s, f − 1, c− 1] · · ·
z1[j, l, s, f − 1, 1] +

b[j, l, s, f, c]b[j, l, s, f, c− 1] · · ·
b[j, l, s, f, 1] =

z′1[j, l, s, f, c + 1]z1[j, l, s, f, c] · · ·
z1[j, l, s, f, 1] (13)

where z′1[j, l, s, f, c + 1] = 1;

v2[j, f, s, n, c] = 1 (14)

if and only if

z2[j, f − 1, s, n, c]z2[j, f − 1, s, n, c− 1] · · ·
z2[j, f − 1, s, n, 1] +

z1[j, f, s, n, c]z1[j, f, s, n, c− 1] · · ·
z1[j, f, s, n, 1] =

z′2[j, f, s, n, c + 1]z2[j, f, s, n, c] · · ·
z2[j, f, s, n, 1] (15)

where z′2[j, f, s, n, c + 1] = 1;

v3[j, q, f, n, c] = 1 (16)

if and only if

z3[j, q, f − 1, n, c]z3[j, q, f − 1, n, c− 1] · · ·
z3[j, q, f − 1, n, 1] +

z2[j, q, f, n, c]z2[j, q, f, n, c− 1] · · ·
z2[j, q, f, n, 1] =

z′3[j, q, f, n, c + 1]z3[j, q, f, n, c] · · ·
z3[j, q, f, n, 1] (17)

where z′3[j, q, f, n, c + 1] = 1;

v4[f, q, n, n, c] = 1 (18)

if and only if

z4[f − 1, q, n, n, c]z4[f − 1, q, n, n, c− 1] · · ·
z4[f − 1, q, n, n, 1] +

z3[f, q, n, n, c]z3[f, q, n, n, c− 1] · · ·
z3[f, q, n, n, 1] =

z′4[f, q, n, n, c + 1]z4[f, q, n, n, c] · · ·
z4[f, q, n, n, 1] (19)

where z′4[f, q, n, n, c + 1] = 1;

w[c] = 1 (20)

if and only if

y2[n, q, c]y2[n, q, c− 1] · · · y2[n, q, 1] +

z4[q, q, n, n, c]z4[q, q, n, n, c− 1] · · · z4[q, q, n, n, 1] =

z′[c + 1]z[c] · · · z[1] (21)

where z′[c + 1] = 1. It is easy to check that in this case
∧16i613δ[i] = 1, ρ = 1, τ = 1.

Let R1[r + 1] = 1 and R2[r + 1] = 0. Clearly, δ[14] = 1.
Since ∑

Pj

CTj(M) 6 R

it is easy to check that η = 1. Note that R1[1] = 1 if

∑
Pj

CTj(M) = R.
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Respectively, R2[1] = 1 if

∑
Pj

CTj(M) < R.

Therefore, ξ1 = 1.
Now suppose that ξ1 = 1. In this case, (1) as a definition

of mapping M can be used. Using relations (2)–(21), one
can easily verify that

∑
Pj

CTj(M) 6 R.

¤
Let

δ[15] = ∧16j6q¬p[0, j],

ϑ[1, j] = ∧16c6r((y1[n, j, c]∧
z3[j, q, n, n, c] ∧ p[c− 1, j]) → (z[c, j] ∧ p[c, j])),

ϑ[2, j] = ∧16c6r((¬y1[n, j, c]∧
z3[j, q, n, n, c] ∧ p[c− 1, j]) → (¬z[c, j] ∧ p[c, j])),

ϑ[3, j] = ∧16c6r((y1[n, j, c]∧
¬z3[j, q, n, n, c] ∧ p[c− 1, j]) → (¬z[c, j] ∧ p[c, j])),

ϑ[4, j] = ∧16c6r((y1[n, j, c]∧
z3[j, q, n, n, c] ∧ ¬p[c− 1, j]) → (¬z[c, j] ∧ p[c, j])),

ϑ[5, j] = ∧16c6r((¬y1[n, j, c]∧
¬z3[j, q, n, n, c] ∧ p[c− 1, j]) → (z[c, j] ∧ ¬p[c, j])),

ϑ[6, j] = ∧16c6r((¬y1[n, j, c]∧
z3[j, q, n, n, c] ∧ ¬p[c− 1, j]) → (z[c, j] ∧ ¬p[c, j])),

ϑ[7, j] = ∧16c6r((y1[n, j, c]∧
¬z3[j, q, n, n, c] ∧ ¬p[c− 1, j]) → (z[c, j] ∧ ¬p[c, j])),

ϑ[8, j] = ∧16c6r((¬y1[n, j, c]∧
¬z3[j, q, n, n, c] ∧ ¬p[c− 1, j]) → (¬z[c, j] ∧ ¬p[c, j])),

ϑ = ∧16i68,16j6qϑ[i, j],

δ[16] = ∧16j6qR1[r + 1, j],

δ[17] = ∧16j6q¬R2[r + 1, j],

η[1, j] = ∧16c6r(R2[c + 1, j] → R2[c, j]),

η[2, j] = ∧16c6r((R[c] ∧ ¬z[c, j] ∧R1[c + 1, j]) → R2[c, j]),

η[3, j] = ∧16c6r((R[c] ∧ z[c, j] ∧R1[c + 1, j]) → R1[c, j]),

η[4, j] = ∧16c6r((¬R[c]∧¬z[c, j]∧R1[c + 1, j]) → R1[c, j]),

η[5, j] = ∧16c6r((¬R[c] ∧ z[c, j]) → ¬R1[c, j]),

η[6, j] = ∧16c6r(¬R1[c + 1, j] → ¬R1[c, j]),

ζ = ∧16i66,16j6qη[i, j],

ρ′ = (∧16i616,16s6n,16j6q,16l6qρ[i, j, s, l])∧
(∧176i632,16s6n,16j6qρ[i, j, s])∧
(∧336i644,16j6qρ[i, j]),

δ′ = δ[1] ∧ δ[2] ∧ (∧56i610δ[i]) ∧ (∧156i617δ[i]),

ξ2 = ϕ ∧ ψ ∧ ρ′ ∧ δ′ ∧ ϑ ∧ ζ ∧ (∧16j6q(R1[1, j] ∨R2[1, j])).

Theorem 2. Given an instance of TRS HCR D, there
is a mapping M : T → P such that

max
Pj

CTj(M) 6 R

if and only if ξ2 is satisfiable.
Proof. Suppose that

CTj(M) = z[r, j]z[r − 1, j] · · · z[1, j] (22)

where

z[c, j] ∈ {0, 1}, 1 6 c 6 r, 1 6 j 6 q.

Assume that

p[c, j] = 1 (23)

if and only if

y1[n, j, c]y1[n, j, c− 1] · · · y1[n, j, 1] +

z3[j, q, n, n, c]z3[j, q, n, n, c− 1] · · · z3[j, q, n, n, 1] =

z′[c + 1, j]z[c, j] · · · z[1, j] (24)

where z′[c + 1, j] = 1. Based on assumptions (22)–(24), the
proof of Theorem 2 is easily obtained using the same ideas
as in the proof of Theorem 1. ¤

Note that

β → γ = ¬β ∨ γ (25)

(β1 ∧ β2) → γ = ¬(β1 ∧ β2) ∨ γ =

¬β1 ∨ ¬β2 ∨ γ (26)

(β1 ∧ β2 ∧ β3) → γ = ¬(β1 ∧ β2 ∧ β3) ∨ γ =

¬β1 ∨ ¬β2 ∨ ¬β3 ∨ γ. (27)

It is easy to see that

(β1 ∧ β2 ∧ β3) → (γ1 ∧ γ2) =

¬(β1 ∧ β2 ∧ β3) ∨ (γ1 ∧ γ2) =

¬β1 ∨ ¬β2 ∨ ¬β3) ∨ (γ1 ∧ γ2) =

(¬β1 ∨ ¬β2 ∨ ¬β3 ∨ γ1) ∧
(¬β1 ∨ ¬β2 ∨ ¬β3 ∨ γ2). (28)

Therefore,

α → ((β1 ∧ β2 ∧ β3) → (γ1 ∧ γ2)) =

¬α ∨ ((β1 ∧ β2 ∧ β3) → (γ1 ∧ γ2)) =

(¬α ∨ ¬β1 ∨ ¬β2 ∨ ¬β3 ∨ γ1) ∧
(¬α ∨ ¬β1 ∨ ¬β2 ∨ ¬β3 ∨ γ2). (29)

Similarly,

α → ((β1 ∧ β2) → (γ1 ∧ γ2)) =

(¬α ∨ ¬β1 ∨ ¬β2 ∨ γ1) ∧
(¬α ∨ ¬β1 ∨ ¬β2 ∨ γ2) (30)
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(α1 ∧ α2) → ((β1 ∧ β2 ∧ β3) → (γ1 ∧ γ2)) =

¬α1 ∨ ¬α2 ∨ ((β1 ∧ β2 ∧ β3) → (γ1 ∧ γ2)) =

(¬α1 ∨ ¬α2 ∨ ¬β1 ∨ ¬β2 ∨ ¬β3 ∨ γ1) ∧
(¬α1 ∨ ¬α2 ∨ ¬β1 ∨ ¬β2 ∨ ¬β3 ∨ γ2) (31)

(α1 ∧ α2) → ((β1 ∧ β2) → (γ1 ∧ γ2)) =

¬α1 ∨ ¬α2 ∨ ((β1 ∧ β2) → (γ1 ∧ γ2)) =

(¬α1 ∨ ¬α2 ∨ ¬β1 ∨ ¬β2 ∨ γ1) ∧
(¬α1 ∨ ¬α2 ∨ ¬β1 ∨ ¬β2 ∨ γ2) (32)

Using relations (25)–(32), we can obtain explicit transfor-
mations of ξ1 and ξ2 into ξ′1 and ξ′2, respectively, such that
ξi ⇔ ξ′i and τ is in CNF. Clearly, ξ′1 and ξ′2 give us ex-
plicit reductions from TRS OCR D and TRS HCR D, re-
spectively, to SAT.

Note that

α ⇔ (α ∨ β1 ∨ β2) ∧
(α ∨ ¬β1 ∨ β2) ∧
(α ∨ β1 ∨ ¬β2) ∧
(α ∨ ¬β1 ∨ ¬β2) (33)

∨l
j=1αj ⇔ (α1 ∨ α2 ∨ β1) ∧

(∧l−4
i=1(¬βi ∨ αi+2 ∨ βi+1)) ∧

(¬βl−3 ∨ αl−1 ∨ αl) (34)

α1 ∨ α2 ⇔ (α1 ∨ α2 ∨ β) ∧
(α1 ∨ α2 ∨ ¬β) (35)

∨4
j=1αj ⇔ (α1 ∨ α2 ∨ β1) ∧

(¬β1 ∨ α3 ∨ α4) (36)

where l > 4. Using relations (33)–(36), we can obtain ex-
plicit transformations of ξ′1 and ξ′2 into ξ′′1 and ξ′′2 , respec-
tively, such that ξ′i ⇔ ξ′′i and τ is in 3CNF. Clearly, ξ′′1
and ξ′′2 give us explicit reductions from TRS OCR D and
TRS HCR D, respectively, to 3SAT.

4 Data for experiments

Following [25], we have used three matrices that store
the values for average computation cost of each task on
each resource (TP-matrix), average communication cost per
unit data between computing resources (PP-matrix), in-
put/output data size of each task (DS-matrix). The val-
ues for PP-matrix resembling the cost of unit data transfer
between resources were given by Amazon CloudFront[60].
While varying the processing cost, we use pricing pol-
icy from Amazon Elastic Compute Cloud[61] for different
classes of virtual machine instances.

Also, we use enterprise cloud of the Department of Intel-
ligent Systems and Robotics of Ural State University that is
intended to solve robotics problems. The enterprise cloud
of the department is composed of two clusters (8 calcu-
lation nodes, Intel Pentium IV 2.40 GHz processor, HDD
2×80GB, Linux; 8 calculation nodes, Intel Pentium IV
2.40GHz processor, HDD 2×80GB, Windows XP SP2), 50
desktop personal computers (from Pentium IV 2.00GHz to
Pentium IV 3.40GHz, from HDD 200GB to HDD 500GB,
Linux, Windows XP SP2, Windows Vista, Windows 7),

80 monoblocs (Intel Atom 1.6GHz processor, HDD 80GB,
Windows Vista), network storage system HP StorageWorks
48TB, and 4 laptops used as scheduler nodes.

The cloud resources are located in three different student
laboratories and seven different research laboratories. Also,
the enterprise cloud of the department can use two clusters
of Mathematics and Mechanics Institute of Ural Branch of
Russian Academy of Sciences (umt, Linux, 1664 calculation
nodes, Xeon 3.00GHz processor; um64, Linux, 128 calcula-
tion nodes, AMD Opteron 2.6 GHz processor)[62].

The cloud is used to solve different tasks. In particular,
it is used for large computational experiments[51−54, 63−66].
Also, it is used as an external computational resource of mo-
bile robots. We use mobile robots with the following com-
putational resources. Electronic systems: the ZX-SERVO
16 microcontroller or SSC-32 microcontroller, onboard com-
puters: VIA processor, AMD Geode LX600 processor, Asus
Eee PC 1000HE, Sony VAIO VPCS13X9R/B.

Robots have wireless access to resources of the cloud.
Mobile robots use a recognition system which consists of
separate recognition modules, intelligent system of selection
of recognition modules, and intelligent generator of recog-
nition modules. The recognition system uses recognition
modules based on neural networks and threshold circuits.
The intelligent system of selection of recognition modules
considers each specific task and each particular environ-
ment. After this, the system determines which particular
recognition module to be used for solving the current task.

If current task is new or the robot is in a new envi-
ronment, then intelligent system of selection of recognition
modules formulates the task of generation of a new module.
The intelligent generator considers each new task and each
new environment. After this, the generator produces new
recognition module. Since onboard computing resources are
very limited, the robot uses only one recognition module at
each moment of time. The remaining part of the system is
installed on the Cloud.

5 SAT solvers for TRS OCR D and
TRS HCR D

In Section 3, we have obtained explicit reductions from
TRS OCR D and TRS HCR D to SAT and 3SAT. We used
the algorithms fgrasp and posit from SATLIB[67]. Also, we
have designed our own genetic algorithm for SAT which is
based on the algorithms from SATLIB[67].

Consider a Boolean function

g(x1, x2, · · · , xn) = ∧m
i=1Ci

where m > 1, and each of the Ci is the disjunction of
one or more literals. Let |Ci| be the number of literals
in Ci, occ(xi, g) be the number of occurrences of xi in g,
occ(¬xi, g) be the number of occurrences of xi in g, respec-
tively. For example, if

g = (x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ (x1 ∨ x4) ∧ (¬x1 ∨ x5)

then occ(x1, g) = 2, occ(¬x1, g) = 1.
We consider a number of natural principles that define

the importance of a variable xi for satisfiability of Boolean
function g. These principles suggest us correct values of
variables.
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1) If occ(xi, g) > 0 and occ(¬xi, g) = 0, then xi = 1.
2) If occ(xi, g) = 0 and occ(¬xi, g) > 0, then xi = 0.
3) If occ(xi, g) > occ(¬xi, g), then xi = 1.
4) If occ(xi, g) < occ(¬xi, g), then xi = 1.
5) If xi = Cj for some j, then xi = 1.
6) If

min
occ(xi,Cj)>0

|Cj | 6 min
occ(¬xi,Cj)>0

|Cj |

then xi = 1.
7) Given positive integers

p1, p2, · · · , pm, q1, q2, · · · , qm

and a set of rational numbers

{αi,u, βi,v | 1 6 i 6 m, 1 6 u 6 pi, 1 6 v 6 qi}

if

∑

16j6m,16u6pj ,|Cj |=u

αj,uocc(xi, Cj) >

∑

16j6m,16v6qj ,|Cj |=v

βj,vocc(¬xi, Cj)

then xi = 1.
Based on these principles, we can consider the following

seven types of commands: P1, P2, · · · , P7. Also, we con-
sider the following three commands for running algorithms:
Try fgrasp, Try posit, and Try ga, where Try ga runs a sim-
ple genetic algorithm which is similar to GASAT[68].

Denote R as the set of commands of these ten types. It
is possible to consider arbitrary element of R∗ as a program
for finding the values of variables of a Boolean function. We
assume that such programs are executed on a cluster.

Execution of each of commands of type Pi reduces the
number of variables of a Boolean function by one. Execu-
tion of each of commands Try fgrasp, Try posit, and Try ga
consists in the run of corresponding algorithm for current
Boolean function on a separate set of calculation nodes and
the transition to the next command.

For algorithms fgrasp and posit, we only run on one cal-
culation node. Genetic algorithms can be used in parallel
execution. We use auxiliary genetic algorithm which deter-
mines the number of calculation nodes.

Initially, we selected a random subset of R∗. We use a
genetic algorithm to select a program from the current sub-
set of R∗ and a genetic algorithm for evolving the current
subset of R∗. The evolution of the current subset of R∗
is implemented on a separate set of calculation nodes. For
every subsequent Boolean functions, the current subset of
R∗ is used. The current subset is obtained by taking into
account the results of previous runs.

We used a heterogeneous cluster based on three clusters
(Cluster USU, Linux, 8 calculation nodes; umt, Linux, 256
calculation nodes; um64, Linux, 124 calculation nodes)[62].

Algorithms fgrasp and posit are used only for 3SAT. Sim-
ple genetic algorithm (SGA) and our algorithm (OA) are
used for SAT and 3SAT. In the experiments, we have con-
sidered scheduling from 100 to 300 tasks. Selected experi-
mental results are given in Tables 1–3.

Table 1 Experimental results for reduction from TRS HCR D

to 3SAT

Fgrasp Posit SGA OA

Average time 48min 39.3min 1.1 h 16.4min

Maximum time 36.4 h 32.6 h 47.2 h 19.7 h

Best time 4.1min 4.7min 7.3min 17 s

Table 2 Experimental results for reduction from TRS OCR D

to 3SAT

Fgrasp Posit SGA OA

Average time 35.2 min 33.6 min 57.2 min 15.2 min

Maximum time 27.9 h 25.4 h 35.2 h 13.3 h

Best time 2.3 min 2.4 min 1.9 min 24 s

Table 3 Experimental results for reduction from TRS HCR D

and TRS OCR D to SAT

SGA (H) OA (H) SGA (O) OA (O)

Average time 59.7min 38.5min 43.1min 29.4min

Maximum time 33.9 h 21.7 h 28.3 h 18.2 h

Best time 6.2min 46 s 37 s 13 s

In Table 3, H means TRS HCR D and O means
TRS OCR D.

6 Scheduling based on particle swarm
optimization

For TRS HCR, a scheduling heuristic for dynamically
scheduling workflow applications was considered in [25, 34].
This heuristic optimizes the cost of task-resource mapping
based on the solution given by particle swarm optimization
technique.

Pandey et al.[25] considered an optimization process such
that this process uses two components: the scheduling
heuristic (see Algorithm 1 in [25]), and the particle swarm
optimization steps for task-resource mapping optimization
(see Algorithm 2 in [25]).

Now, we consider a brief description of particle swarm
optimization algorithm in [25].

vk+1
i = ωvk

i +c1rand1×(pbesti−xk
i )+c2rand2×(gbest−xk

i ),

xk+1
i = xk

i + vk+1
i

where vk
i is the velocity of particle i at iteration k, vk+1

i is
the velocity of particle i at iteration k + 1, ω is the inertia
weight, cj is the acceleration coefficients, j = 1, 2, randi

is the random number between 0 and 1, i = 1, 2, xk
i is the

current position of particle i at iteration k, pbesti is the best
position of particle i, gbest is the position of best particle
in a population, and xk+1

i is the position of the particle i
at iteration k + 1.

In this algorithm, random numbers cj and randi were
used. We use SAT solvers as the testbed for particle swarm
optimization algorithm. In particular, we consider a genetic
algorithm for evolving a population of values of cj . Also,
we use a genetic algorithm for evolving a population of re-
current neural networks that predict values of randi. Both
genetic algorithms used the optimal values of MH for cal-
culating the values of fitness function. Selected experimen-
tal results for particle swarm optimization algorithm with
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random values of cj and randi and for particle swarm opti-
mization algorithm with evolved values of cj and randi and
relatively optimal values of MH are given in Table 4.

Table 4 Experimental results for PSO

PSO (random) PSO (evolved)

Average result 74% 85%

Minimum result 42% 63%

Best result 88% 97%

7 Conclusions

In this paper, we have described an approach to solve
TRS HCR and TRS OCR problems. This approach is
based on constructing logical models for these problems.
Using such models, we can apply algorithms for SAT to
solve TRS HCR and TRS OCR. Also, this model allows us
to create a testbed for particle swarm optimization algo-
rithms for scheduling workflows.
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[47] M. A. Cruz-Chávez, R. Rivera-Lopez. A local search algo-

rithm for a SAT representation of scheduling problems. In

Proceedings of the 2007 International Conference on Com-

putational Science and Its Applications, ACM, Berlin, Ger-

many, pp. 697–709, 2007.

[48] S. O. Memik, F. Fallah. Accelerated SAT-based schedul-

ing of control/data flow graphs. In Proceedings of the 2002

IEEE International Conference on Computer Design: VLSI

in Computers and Processors, IEEE, Freiburg, Germany,

pp. 395–400, 2002.

[49] A. Wasfy, F. Aloul. Solving the university class scheduling

problem using advanced ILP techniques. In Proceedings of

the 4th IEEE GCC Conference, IEEE, Piscataway, USA,

pp. 1–5, 2007.

[50] H. H. Hoos. SAT-encodings, search space structure, and

local search performance. In Proceedings of the 16th Inter-

national Joint Conference on Artificial Intelligence, ACM,

Stockholm, Sweden, vol. 1, pp. 296–302, 1999.

[51] A. Gorbenko, M. Mornev, V. Popov. Planning a typical

working day for indoor service robots. IAENG International

Journal of Computer Science, vol. 38, no. 3, pp. 176–182,

2011.

[52] A. Gorbenko, M. Mornev, V. Popov, A. Sheka. The prob-

lem of sensor placement for triangulation-based localisation.

International Journal of Automation and Control, vol. 5,

no. 3, pp. 245–253, 2011.



A. Gorbenko and V. Popov / Task-resource Scheduling Problem 441

[53] A. Gorbenko, V. Popov. On the problem of placement of

visual landmarks. Applied Mathematical Sciences, vol. 6,

no. 14, pp. 689–696, 2012.

[54] A. Gorbenko, V. Popov, A. Sheka. Localization on discrete

grid graphs. Computer, Informatics, Cybernetics and Ap-

plications, X. He, E. Hua, Y. Lin, X. Liu, Eds., Berlin,

Germany: Springer-Verlag, pp. 971–978, 2012.

[55] A toolbox for Matlab TORSCHE Scheduling, [On-

line], Available: http://rtime.felk.cvut.cz/scheduling-

toolbox/manual/, February 26, 2012.

[56] M. Kutil, P. Sucha, R. Capek, Z. Hanzalek. Optimization

and scheduling toolbox. Matlab — Modelling, Program-

ming and Simulations, E. P. Leite, Ed., Rijeka, Croatia:

Sciyo, pp. 239–260, 2010.

[57] J. Blazewicz, J. K. Lenstra, A. H. G. Rinnooy Kan. Schedul-

ing subject to resource constraints: Classification and com-

plexity. Discrete Applied Mathematics, vol. 5, no. 1, pp. 11–

24, 1983.

[58] R. L. Graham, E. L. Lawler, J. K. Lenstra, A. H. G. Rin-

nooy Kan. Optimization and approximation in determinis-

tic sequencing and scheduling: A survey. Annals of Discrete

Mathematics, vol. 5, no. 2, pp. 287–326, 1979.

[59] zChaff SAT solver, [Online], Available:

http://www.princeton.edu/∼chaff/zchaff.html, Febru-

ary 26, 2012.

[60] Amazon CloudFront, [Online], Available:

http://aws.amazon.com/cloudfront/, February 26, 2012.

[61] Amazon Elastic Compute Cloud (Amazon EC2), [On-

line], Available: http://aws.amazon.com/ec2/, February

26, 2012.

[62] Web page “Computational resources of

IMM UB RAS”, [Online], Available:

http://parallel.imm.uran.ru/mvc now/hardware/supercomp.

htm, February 26, 2012. (In Russian)

[63] A. Gorbenko, A. Lutov, M. Mornev, V. Popov. Algebras of

stepping motor programs. Applied Mathematical Sciences,

vol. 5, no. 34, pp. 1679–1692, 2011.

[64] A. Gorbenko, V. Popov. Self-learning algorithm for visual

recognition and object categorization for autonomous mo-

bile robots. Computer, Informatics, Cybernetics and Ap-

plications, X. He, E. Hua, Y. Lin, X. Liu, Eds., Berlin,

Germany: Springer-Verlag, pp. 1289–1295, 2012.

[65] A. Gorbenko, V. Popov, A. Sheka. Robot self-awareness:

Exploration of internal states. Applied Mathematical Sci-

ences, vol. 6, no. 14, pp. 675–688, 2012.

[66] A. Gorbenko, V. Popov, A. Sheka. Robot self-awareness:

Temporal relation based data mining. Engineering Letters,

vol. 19, no. 3, pp. 169–178, 2011.

[67] SATLIB — The Satisfiability Library, [Online], Available:

http://people.cs.ubc.ca/∼hoos/SATLIB/index-ubc.html,

February 26, 2012.

[68] F. Lardeux, F. Saubion, J. K. Hao. GASAT: A genetic local
search algorithm for the satisfiability problem. Evolutionary
Computation, vol. 14, no. 2, pp. 223–253, 2006.

Anna Gorbenko received B. Sc. de-
gree on computer science in Department
of Mathematics and Mechanics, Ural State
University, Russian Federation in 2009.
Currently, she is a researcher of the Depart-
ment of Intelligent Systems and Robotics
of Ural State University. She has (co-
)authored 2 books and 17 papers, 10 confer-
ences publications. She received Microsoft
Best Paper Award from international con-

ference SYRCoSE 2011.
Her research interests include different aspects of artificial in-

telligence and robotics.
E-mail: gorbenko.aa@gmail.com

Vladimir Popov received M. Sc. degree
of mathematics in Department of Mathe-
matics and Mechanics, Ural State Univer-
sity, Russian Federation in 1992. From 1996
to 2002, he was a Ph.D. candidate in phys-
ical and mathematical sciences in Math-
ematics and Mechanics Institute of Ural
Branch of Russian Academy of Sciences.
Since 2002, he is a professor of Ural State
University. From 2006 to 2009, he was the

chair of the Laboratory of Distributed Computing and Investi-
gation of Models, Algorithms and Programs of Ural State Uni-
versity. Since 2009, he has been the chair of the Department
of Intelligent Systems and Robotics of Ural State University. He
has (co-)authored 18 books and more than 120 papers, more than
40 conferences publications. He received Microsoft Best Paper
Award from international conference in 2011. In 2008, one of
his paper won the Russian competitive selection of survey and
analytical papers.

His research interests include different aspects of artificial in-
telligence and robotics.

E-mail: Vladimir.Popov@usu.ru (Corresponding author)


