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1 Introduction

The temporal partitioning problem[1−3] can be seen as
a graph-based problem. A program or application can be
modelled by a data flow graph. Then, the temporal par-
titioning divides the input graph into temporal partitions
that are configured one after another on the reconfigurable
device[4, 5]. Each partition is also called a stage or a micro-
cycle, and all the micro-cycles form one user cycle. The first
temporal partition receives input data, performs computa-
tions and stores intermediate data into on-board memory.
The device is then reconfigured for the next segment, which
computes results based on the intermediate data, from the
previous partitions. Fig. 1 shows a part of a design that
has been partitioned into four partitions. Assuming that
a node requires a configurable logic block (CLB) and each
arc has a 1-byte width, and also assuming that there is a
device with a size of 4 CLB and a memory with 3 bytes is
available for communication. The partitioning, shown in
Fig. 1 (a), needs five CLBs and five bytes while that shown
in Fig. 1 (b) uses only three CLBs and three bytes. There-
fore, the partitioning, shown in Fig. 1 (a), is undesirable.

Fig. 1 Temporal partitioning
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The main objective of most of the related works is ei-
ther to find the minimal size of reconfigurable area to ac-
complish the graph within a fixed limit of time or to find
the minimal execution time of the input graph on a fixed-
size of area[6−9]. However, the proposed approach focuses
on minimizing the required data transfer between different
temporal partitions of the design. The goal to be reached
during partitioning is the minimization of the communica-
tion overhead among the partitions, which also means the
minimization of the use of memory. In Fig. 2, we present an
illustrative example, without taking care of any constraint,
of two temporal partitionings. In Fig. 2 (a), the total com-
munication cost across partitions is 35. However, the sum of
the communication cost in Fig. 2 (b) is 19. Hence, to reduce
the communication cost, we favor the second algorithm.

Fig. 2 Total communication cost

2 Related work

In the literature, often the network flow algorithm has
been used to reduce the communication cost across tempo-
ral partitions. The first network flow algorithms has been
used in [10−12] and improved in [13]. The method is a
recursive bipartition approach that successively partitions
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a set of remaining nodes in two sets, one of which is a final
partition, whereas a further partition step must be applied
on the second one. The initial network algorithm is shown
below as presented in [10, 11].

Begin
Step 1. Construct graph G′ from graph G by net modelling.
Step 2. Pick a pair of node s and t in G′ as source and sink.
Step 3. Find a min cut C in G′. Let X be the sub-graph

reachable from s through augmenting path, and X′ be the rest.
Step 4. If (Lr � w(X) � Ur) then stop and return C as

solution.
Step 5. If (w(X) < Lr) then collapse all nodes in X to S pick

a node v in X′, and collapse v to s go to Step 3.
Step 6. If (w(X) > Ur) then collapse all nodes in X′ to t

pick a node v in X, and collapse v to t go to Step 3.

End

w(X) is the total area of all nodes in X; Lr = (1−ε)Rmax,
Rmax is the area of the device; Ur = (1− ε)Rmax; ε = 0.05;
S is the source node; t is the sink node. Let us consider the
graph G of Fig. 3.

Fig. 3 Graph G

Let us assume 200 CLBs be the area of the device, 100
CLBs be the area of the multiplier, and 50 CLBs be the area
of the adder, the comparator and the multiplexer. And let
us assume a memory with 50 bytes available for communi-
cation and each edge has a 32-bit width. We applied the
network flow algorithm on the graph of Fig. 3. The result is
shown in Fig. 4, the network flow algorithm puts nodes T2,
T3, and T4 in partition P1, nodes T1, T5, and T6 in partition
P2 and node T7 in partition P3.

Fig. 4 Temporal partitioning

The network flow may minimize the communication cost.
However, the model is constructed by inserting a great
amount of nodes and edges in the original graph. The re-
sulting graph may grow too big. In the worst case, the
number of nodes in the new graph can be twice the number
of the nodes in the original graph. The number of addi-
tional edges also grows dramatically and becomes difficult
to handle. Further, the network flow algorithm, as shown
above, is a heuristic algorithm, and in fact there is no a
mathematical model behind it.

3 Data flow graph

A data flow graph (DFG) is a directed acyclic graph
G = (V, E), where V is a set of nodes |V | = n and E is
a set of edges. A directed edge eij ∈ E represents the de-
pendence between nodes (Ti, Tj). For each edge eij , there
is a weight aij that represents the communication cost be-
tween node Ti and node Tj . We assume that each node has
an equivalent hardware implementation, which occupies an
area on the chip. Therefore, the nodes as well as the edges
in a DFG have some characteristics such as area, latency
and width that are derived from the hardware resources
used later to implement nodes.

3.1 Node and edge parameters

Given a node Ti ∈ V and eij ∈ E.
1) ai denotes the area of Ti.
2) The latency Li is the time needed to execute Ti.
3) For a given edge eij which defines a data dependency

between Ti and Tj , we define the weight αi,j of eij as the
amount of data transferred from Ti to Tj .

4 Temporal partitioning

A temporal partitioning P of the graph G = (V, E), is
its division into some disjoint partitions such that P =
{P1 · · ·Pk}. A temporal partitioning is feasible in accor-
dance to a reconfigurable device H with area A(H) and
pins T (H) (number of programmable input/outputs (I/Os)
per device); if the two conditions are verified:

∀Pi ∈ P ; A(Pi) � A(H)

TCCost =

K∑

i=1

CCost(Pm) =

K∑

m=1

∑

Ti∈Pm;Tj∈Pm

αi,j � T (H)

where TCCost denotes total communication cost, and
CCost denotes communication cost.

In the rest of this section, we are interested in the ex-
planation of these two conditions.

Given a temporal partitioning P = {P1 · · ·Pk} of the
data flow graph G = (V, E), the area constraint is satisfied
if and only if:

∀Pi ∈ P ; A(Pi) � A(H) (1)
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where A(Pi) is the area of partition Pi; A(H) is the area of
the device. Or the area of partition Pi equals the area of
nodes belong to partition Pi ⇒

A(Pi) =
∑

Ti∈Pi

ai. (2)

Based on (1) and (2) to satisfy the area constraint

∀Pi ∈ P ;
∑

Ti∈Pi

ai � A(H). (3)

Given a temporal partitioning P = {P1 · · ·Pk} of the
data flow graph G = (V, E), the pins constraint is satisfied
if and only if:

TCCost =
K∑

i=1

CCost(Pm) =

K∑

m=1

∑

Ti∈Pm;Tj∈Pm

ai,j � T (H). (4)

In fact, if the variable ai,j �= 0 signifies that Tj depends
on Ti. When node Ti is being placed in partition Pm and
Tj is being placed outside Pm, then the data being commu-
nicated between them will have to be stored in the memory.
Consequently, the sum of all the data being communicated
across all partition should be less than the pins constraint.

5 Proposed algorithm

Our algorithm aims to solve the following problem: Given
a DFG G = (V, E) and a set of constraints: Find the way of
graph partitioning with optimal number of temporal parti-
tions such that the communication cost has the lowest value
while respecting all constraints.

Our algorithm is composed of two main steps. The first
step aims to find an initial partitioning Pin of the graph.
This step gives the optimal solution in term of communi-
cation cost. Next, if the area constraint is satisfied after
the first step then we adopt the initial partitioning, else we
go to the second step. Hence, the second step aims to find
the final partitioning P of the graph while satisfying the
area constraint. If the second step cannot find a feasible
scheduling then we relax the number of partitions by one
and the algorithm goes to the first step. And, we restart to
find a feasible solution with the new number of partitions.

5.1 First step: initial partitioning

Given a data flow graph G = (V, E), we define:
The weighted adjacency matrix W as follows:

Wi,j = ai,j = 0.

The degree matrix D as follow:

Di,j =
n∑

i=1

Wi,j , Di,i = 0.

The Laplacian of G as follow:

L = D − W.

Lemma 1. The matrix L satisfies the following
properties[14]:

1) For every vector X = {x1, x2, · · · , xn} ∈ Rn; we have

XTLX =
1

2

n∑

i=1

n∑

j=1

Wi,j(xi − xj)
2.

2) L is symmetric and positive semi-definite.
3) L has n non-negative, real-valued eigenvalues 0 = λ1 �

λ2 � · · · � λn.
How to minimize the communication cost?
Our main goal is to find the way of partitioning the graph

such as the communication cost has lowest value. This sec-
tion shows how to achieve a good solution to such graph
partitioning problems.

Given a temporal partitioning of G = (E, V ) into k dis-
joint partitions P = {P1, P2, · · · , Pk}; the communication
cost, CCost(Pm), of partition Pm has been defined in [15]
as follows:

CCost(Pm) =
1

2

⎛

⎜⎝

∑

Ti∈Pm;Tj∈|Pm|
Wi,j

|Pm|

⎞

⎟⎠ . (5)

This implies that

TCCost =
K∑

i=1

CCost(Pm) =
|V |
2

k∑

i=1

∑

Ti∈Pm;Tj∈|Pm|
Wi,j

|Pm||Pm|
(6)

where TCCost is the total communication cost, |Pm| is
the number of nodes inside partition Pm, |Pm| is the num-
ber of nodes outside the partition Pm. Hence, we have
|Pm| + |Pm| = |V | = n.

Lemma 2. Given an indicator vector Xm defined as fol-
low: Xm(i) = {Xm(1), Xm(2), · · · , Xm(n)}T, where m =
1, 2, · · · , k and i = 1, 2, · · · , n are defined as

Xm(i) =

⎧
⎪⎨

⎪⎩

1√
|Pm|

, if Ti ∈ Pm

0, otherwise

we have

TCCost =
K∑

i=1

XT
mLXm. (7)

We introduce a matrix Xp (n × k) that contains the k
indicator vectors as columns.

We can check that

XT
mLXm = (XT

p LXp)m, m. (8)

Overall, we can achieve

TCCost =

K∑

m=1

XT
mLXm =

K∑

m=1

(XT
p LXp)m,m =

tr(XT
p LXp)m,m. (9)

Therefore, using (5), the problem of communication cost
minimization can be expressed as

Minimize(T Com Cost) → Minimize(tr(XT
p LXp). (10)

The standard form of a trace minimization problem can
be solved by choosing Xp as the matrix that contains the
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first k eigenvectors corresponding to the k smallest eigen-
values of matrix L as columns.

Lemma 3. Given a (n × n) matrix Mp as follows:

Mi,j =

⎧
⎨

⎩

1

|Pm| , if Ti , Tj ∈ Pm

0, otherwise

we have XT
mLXm = Mp.

The initial partitioning step of our algorithm is summa-
rized by the following steps:

Step 1. Compute the minimum number of partitions
K = Min Part = �Area(G)/Area(H)�.

Step 2. Compute the Laplacian matrix L(G) of G.
Step 3. Compute k lowest eigenvalues of L(G).
Step 4. Construct the (n × k) matrix Xp that have the

K eignvectors as columns.
Step 5. Compute Z = XpXT

p .
Step 6. Construct the (n × n) matrix Mp = Mi,j from

Z. Mi,j = 1 if Zi,j � 1/n, 0 otherwise.
Step 7. Generate the initial partitioning from matrix

Mp.
Step 8. If the area constraint is satisfied then final par-

titioning = initial partitioning; else go to Step 2 (we mean
by “go to Step 2”: go to final partitioning step).

5.2 Second step: final partitioning

In this step, we start from the initial partitioning Pin

given by the first step and the set of partitions Pi ∈ Pin,
where A(Pi) > A(H). Our technique balances nodes from
partition Pi to Pj or conversely until the satisfaction of the
area constraint. The balance of nodes is based on the force
F (Ti, Pi → Pj) associated with partition Pi on a node Ti

to be scheduled into partition Pj and on the force F (Ti,
Pj → Pi) associated with partition Pj on a node Ti to be
scheduled into partition Pi. For instance, let us assume that
Pi < Pj ; Pi, Pj ∈ Pin.

These forces are calculated as follow:

F (Ti, Pi → Pj) = δ1(Ti) × OF (Ti) (11)

where δ1(Ti) = 0, if there is a node Tj ∈ Pi and Tj is an
output of Ti, otherwise δ1(Ti) = 1.

OF (Ti) = (Nu(Ti) + 1). (12)

Given two nodes Ti and Tj ∈ Pi

Nu(Ti) =
∑

Tj∈Pi

βi, jTj (13)

where βi, j = 1, if Tj is an input of Ti, 0 otherwise

F (Ti, Pj → Pi) = δ2(Ti) × InF (Ti) (14)

where δ2(Ti) = 0, if there is a node Tj ∈ Pi and Tj is an
input of Ti, otherwise δ2(Ti) = 1.

InF (Ti) = (Nq(Ti) + 1). (15)

Given two nodes Ti and Tj ∈ Pj

Nq(Ti) =
∑

Tj∈Pj

φi,jTj (16)

where φi,j = 1, if Tj is an output of Ti, 0 otherwise.
In general, due to the scheduling of one node, other node

schedules will also be affected. At each iteration, the force
of every node being scheduled in every possible partition is
computed. Then, the distribution graph is updated and the
process repeats until no more nodes remain to be scheduled.

5.3 Example

Applying the steps of our algorithm on the graph of
Fig. 5, let 800 CLB be the area of the device.

Fig. 5 Graph G

Table 1 Areas of nodes

Nodes Area (CLB)

T1 225

T2 210

T3 220

T4 200

T5 276

T6 196

T7 210

T8 167

T9 200

T110 230

Step 1. k = �Area(G)/Area(H)��2134/800� = 3.
Step 2. Laplacian matrix L(G) of G is

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

11 −5 0 0 −5 0 0 0 0 0

−5 9 −3 0 0 0 0 0 0 0

0 −3 7 −4 0 0 0 0 0 0

0 0 −4 9 0 0 0 −5 0 0

−5 0 0 0 5 0 0 0 0 0

0 0 0 0 0 13 0 0 −5 −3

0 0 0 0 0 0 7 0 0 −7

0 0 0 5 0 0 0 5 0 0

0 0 0 0 0 −5 0 0 5 0

0 0 0 0 0 −8 −7 0 0 15

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Step 3.1. Eigenvalues of matrix L(G) are
λ1 = 0 � λ2 = 0 � λ3 = 1.0671 � λ4 = 3.899 � λ5 =

4.9158 � λ6 = 8.2945 � λ7 = 11.8389 � λ8 = 14.0258 �
λ9 = 17.6967 � λ10 = 24.2618.
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Step 3.2. Eigenvectors of matrix L(G)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0.40 0.03 0.40 0 0 −0.39 0

0.40 0.03 0.23 0 −0.41 −0.52 0

0.40 0.03 −0.17 0 −0.58 0.48 0
0.40 0.03 −0.43 0 0 0.23 0

0.40 0.03 0.51 0 0.50 0.45 0

0.03 −0.49 0 −0.15 0 0 0.61

0.03 −0.49 0 0.61 0 0 −0.53

0.40 0.03 −0.55 0 0.47 −0.35 0

0.03 −0.49 0 −0.72 0 0 −0.44

0.03 −0.49 0 0.27 0 0 0.36

−0.22 −0.72 0

0 0.57 0

0.42 −0.20 0

−0.75 0.12 0

0.12 0.28 0

0 0 −0.53

0.42 0 −0.29

0 −0.04 0

0 0 0.15

0 0 0.73

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Step 4. Matrix Xp, columns of Xp = (Eigenvectors of
the lowest eigenvalues) is

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0.40 0.03 0.40

0.40 0.03 0.40

0.40 0.03 0.23

0.40 0.03 −0.17

0.40 0.03 −0.43

0.40 0.03 0.51

0.03 −0.49 0

0.03 −0.49 0

0.40 0.03 −0.55

0.03 −0.49 0

0.03 −0.49 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Step 5. Matrix Z = XpXT
p is

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Nodes T1 T2 T3 T4 T5 T6

T1 0.32 0.26 0.09 0 0.37 0
T2 0.26 0.22 −0.12 0.06 0.28 0

T3 0.09 −0.12 0.19 0.24 0.07 0

T4 0 0.06 0.24 0.35 −0.05 0

T5 0.37 0.28 0.07 −0.05 0.42 0

T6 0 0 0 0 0 0.25

T7 0 0 0 0 0 0.25

T8 −0.05 0.03 0.26 0.40 −0.11 0

T9 0 0 0 0 0 0.25

T10 0 0 0 0 0 0.25

T7 T8 T9 T10

0 −0.05 0 0

0 0.03 0 0

0 0.26 0 0

0 0.40 0 0

0 −0.11 0 0

0.25 0 0.25 0.25

0.25 0 0.25 0.25

0 0.46 0 0

0.25 0 0.25 0.251

0.25 0 0.25 0.25

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Step 6. The matrix Mp

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Nodes T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

T1 1 1 0 0 1 0 0 0 0 0

T2 1 1 0 0 1 0 0 0 0 0

T3 0 0 1 1 0 0 0 1 0 0

T4 0 0 1 1 0 0 0 1 0 0

T5 1 1 0 0 1 0 0 0 0 0

T6 0 0 0 0 0 1 1 0 1 1

T7 0 0 0 0 0 1 1 0 1 1

T8 0 0 1 1 0 0 0 1 0 0

T9 0 0 0 0 0 1 1 0 1 1

T10 0 0 0 0 0 1 1 0 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

To build the initial partitioning, we use the propriety of
Lemma 3; if Mi,j = Mj,i = 1 then nodes (Ti, Tj) belong
to the same partition, else (Ti, Tj) belong to deferent par-
titions.

Step 7. Initial partitioning (Pin), with K = 3.
Considering the partitioning solution of the graph shown

above in shown in Fig. 6,

P1 = T1T2T5 Area (P1) = 736 CLBs

P3 = T3T4T8 Area (P2) = 597 CLBs

P3 = T6T7T9T10 Area(P3) = 836 CLBs.

Fig. 6 Initial partitioning

The area constraint is not satisfied for partition P3.
To find the final partitioning, first our algorithm com-

pute the force associated to each node in partition 3 to be
scheduled in partition 2.

F (T6, P3 → P2) = 0, 66, F (T7, P3 → P2) = 0, 5

F (T9, P3 → P2) = 0, F (T10, P3 → P2) = 0.

Next, the algorithm displaces node 7 from P3 to P2 since
it has the lowest nonzero force, hence the new solution will
be

P1 = T1T2T5 Area(P1) = 736 CLBs

P3 = T3T4T8T7 Area(P2) = 797 CLBs

P3 = T6T9T10 Area(P3) = 626 CLBs.

Finally, since the new partitioning, shown in Fig. 7, sat-
isfies the area constraint, we adopt it as final partitioning.



R. Ayadi et al./ A Partitioning Methodology That Optimizes the Communication Cost for · · · 285

Fig. 7 Final partitioning

6 Experiments

In this section, we used four algorithms in order to di-
vide each of below examples. We used the initial network
flow algorithm[10, 11], the enhance network flow[12], the list
scheduling algorithm[8], and the proposed algorithm. In
each case, we evaluated the performance of each algorithm
in terms of total communication cost, whole latency of the
graph and run time of the algorithm. The host computer
was a Core Duo CPU, memory 1GB running at Windows
XP. The graphs shown in Table 2 were chosen to be im-
plemented on FPGA Vertex-II XC2V1000. The Vertex-II
XC2V1000 has the following characteristics, as given in Ta-
ble 3 below.

Table 2 Benchmark characteristics

DFGs Nodes Edges Area (CLBs)

DCT 4 × 4 224 256 8045

DCT 16 × 16 1929 2304 13919

16-FFT 203 228 5226

64-FFT 1287 664 10098

Table 3 Characteristics of the device

Descriptions Values

Number of lines 40

Number of Columns 32

Size (CLB) 1280

Input/output ports 432

Configuration time CT 7.73ms

The discrete cosine transform (DCT) is the most com-
putationally intensive part of the CLD algorithm, that is
why it has been chosen to be implemented in hardware.
The model proposed by [16] is based on 16 vector products.
Thus, the entire DCT is a collection of many nodes, where
each node is a vector product. 16-FFT and 64-FFT (fast
Fourier transform) are 16 points and 64 points of FFT, re-
spectively, have important roles in analysis, design, and im-
plementation of discrete-time signal processing algorithms
and systems. Table 2 gives the characteristics of 4×4 DCT,
16 × 16 DCT, 16-FFT and 64-FFT task graphs.

Let M.C cost denote maximum communication cost. Ta-
ble 4 gives different solutions provided by the list schedul-
ing, the initial network flow technique, the enhance network
flow and the proposed algorithm. First, our algorithm has

always the lowest number of partitions. In fact, as config-
uration time of currently dynamically reconfigurable hard-
ware is very large. Thus, the configuration overhead will be
a problem because the configuration time mainly occupies
the time required to switch a partition to another parti-
tion. Therefore, since our algorithm has the lowest number
of partitions, it has the lowest latency. Results show an
average improvement of 20.5 % in terms of design latency.
Second, Table 4 shows that our partitioning algorithm min-
imizes communication overhead between partitions for dy-
namically reconfigurable hardware. The results show an
average improvement of 28.87 %, 13.18 %, and 6.31 % for
actual applications, compared with three conventional al-
gorithms. As conclusion, our algorithm has a good trade-
off between computation and communication. Hence, our
algorithm can be qualified to be a good temporal partition-
ing candidate. In fact, an optimal partitioning algorithm
needs to balance computation required for each partition
and reduce communication required between partitions so
that mapped applications can be executed faster on dynam-
ically reconfigurable hardware.

7 Conclusions

Today′s large and complex designs are now commonly
implemented in FPGAs, however designer suffers princi-
pally from the time needed due to communication over-
head, which is still relatively high. A high reconfiguration
time may lead to impractical design mainly when designer
focuses on minimizing the overall communication of the de-
sign partition. For that reason, we have developed in this
paper a typical temporal partitioning algorithm to reduce
the communication between design partitions. In fact, our
algorithm uses the eigenvectors of the graph to find the
best schedule of nodes that minimizes the communication
between design partitions of the graph. In addition, to show
the effectiveness of our algorithm, the algorithm is exper-
imented on benchmark circuits such as DCT, FFT task
graphs. The studied evaluation cases show that the pro-
posed algorithm provides very significant results terms of
communication cost and latency versus other well known
algorithms used in the temporal partitioning field.

Appendix: Proofs of lemmas

Proof of Lemma 1.
Part 1. By the definition of the matrix D

XTLX =XTDX − XTDX − XTWX =
n∑

i=1

Dix
2
i−

n∑

i=1

n∑

j=1

Wi,jxixj =
1

2

n∑

i=1

(Di + Di)x
2
i =

n∑

i=1

n∑

j=1

Wi,jxixj =

1

2

(
n∑

i=1

Dix
2
i − 2

n∑

i=1

n∑

j=1

Wi,jxixj +

n∑

j=1

Djx
2
j

)

1

2

n∑

i=1

n∑

j=1

Wi,j(xi − xj)
2.
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Table 4 Design results

Proposed List Initial Improved
Improvement Improvement Improvement

algorithm scheduling network flow network flow
versus list versus initial versus improved

scheduling network flow network flow

Graph
4 × 4 DCT 4 × 4 DCT 4 × 4 DCT 4 × 4 DCT 4 × 4 DCT 4 × 4 DCT 4 × 4 DCT

Task graph Task graph Task graph Task graph Task graph Task graph Task graph

Number of
7 9 9 9 – – –

partitions

TCcost 570 744 634 589 23.38% 10.09% 3.22%

M.C cost 110 105 83 81 – – –

Whole 5.770 ns + 7× 4770 ns + 9× 4395 ns + 9× 4570 ns 9×
22% 22 % 22%

latency CT
∼= 7 × CT CT

∼= 9 × CT CT
∼= CT CT

∼= 9 × CT

Run time 0.2 s 0.12 s 0.12 s 0.12 s – – –

Graph
16 × 16 DCT 16 × 16 DCT 16 × 16 DCT 16 × 16 DCT 16 × 16 DCT 16 × 16 DCT 16 × 16 DCT

Task graph Task graph Task graph Task graph Task graph Task graph Task graph

Number of
11 15 15 15 – – –

partitions

TCcost 2023 3106 2378 2193 34.86% 14.92% 7.75%

M.C cost 365 297 265 228 – – –

Whole 8420 ns + 11× 6610 ns + 15× 6420 ns + 15× 7730 ns + 15×
26% 26 % 26%

latency CT
∼= 11 × CT CT

∼= 15 × CT CT
∼= 15 × CT CT

∼= 15 × CT

Run time 2 s 1.55 s 1.55 s 1.55 s – – –

Graph
16-FFT 16-FFT 16-FFT 16-FFT 16-FFT 16-FFT 16-FFT

Task graph Task graph Task graph Task graph Task graph Task graph Task graph

Number of
5 6 6 6 – – –

partitions

TCcost 343 488 392 363 29.71% 12.5 % 5.50%

M.C cost 92 93 77 72 – – –

Whole 4730 ns + 5× 3855 ns + 6× 3665 ns + 6× 3255 ns + 6×
4.85% 4.85 % 4.85%

latency CT
∼= 5 × CT CT

∼= 6 × CT CT
∼= 6 × CT CT

∼= 6 × CT

Run time 0.2 s 0.09 s 0.09 s 0.09 s – – –

Graph
64-FFT 64-FFT 64-FFT 64-FFT 64-FFT 64-FFT 64-FFT

Task graph Task graph Task graph Task graph Task graph Task graph Task graph

Number of
9 11 11 11 – – –

partitions

TCcost 1432 1976 1689 1570 27.53% 15.21% 8.78%

M.C cost 189 229 185 172 – – –

Whole 7250 ns + 9× 6760 ns + 11× 6520 ns + 11× 6550 ns + 11×
18% 18 % 18%

latency CT
∼= 9 × CT CT

∼= 11 × CT CT
∼= 11 × CT CT

∼= 11 × CT

Run time 2 s 1.31 s 1.31 s 1.31 s – – –

Average improvement in communication cost 28.87% 13,18% 6.31%

Average improvement in latency 20.5% 20.5 % 20.5%

Part 2. The symmetry of L follows directly from the
symmetry of W and D. The positive semi-definiteness is a
direct consequence of Part 1, which shows that XTLX � 0
for all X = {x1, x2, · · · , xn} ∈ Rn.

Part 3. This is a direct consequence of Part 1 and Part
2. �

Proof of Lemma 2. According to the properties of
Laplacian matrix

XT
mLXm = XT

mDXm = XT
mWXm =

n∑

i=1

Dix
2
m(i)

n∑

i=1

n∑

j=1

Wi,jxm(i)xm(j) =

1

2

n∑

i=1

(Di + Di)xm −
n∑

i=1

n∑

j=1

Wi,jxm(i)xm(j) =

1

2

(
n∑

i=1

(Di + Di)x
2
m(i) − 2

n∑

i=1

n∑

j=1

Wi,jxm(i)xm(j)+

n∑

j=1

Djx
2
m(j)

)
=

1

2

n∑

i=1

n∑

j=1

Wi,j(xm(i) − xm(j))2 =

1

2

(∑
Ti∈Pm;Tj∈|Pm|Wi,j

|Pm| +

∑
Ti∈Pm;Tj∈|Pm|Wi,j

|Pm|

)
=
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|V |
2

(
k∑

i=1

∑
Ti∈Pm;Tj∈|Pm|Wi,j

|Pm||Pm|

)
⇒

k∑

m=1

Xt
mLXm =

V

2

(
k∑

m=1

∑
Ti∈Pm;Tj∈|Pm| Wi,j

|Pm||Pm|

)
= TCCost.

�
Proof of Lemma 3. The ij-th element of the matrix

XpXT
p is

∑k
m=1 Xm(i)Xm(f). The term Xm(i)Xm(j) will

be non-zero if and only if both Ti and Tj , are in Pm, hence
the sum is 1/|Pm| when Ti and Tj are in the same partition;
0 otherwise. �
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