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Abstract: In order to apply the terminal sliding mode control to robot manipulators, prior knowledge of the exact upper bound
of parameter uncertainties, and external disturbances is necessary. However, this bound will not be easily determined because of
the complexity and unpredictability of the structure of uncertainties in the dynamics of the robot. To resolve this problem in robot
control, we propose a new robust adaptive terminal sliding mode control for tracking problems in robotic manipulators. By applying
this adaptive controller, prior knowledge is not required because the controller is able to estimate the upper bound of uncertainties
and disturbances. Also, the proposed controller can eliminate the chattering effect without losing the robustness property. The
stability of the control algorithm can be easily verified by using Lyapunov theory. The proposed controller is tested in simulation on a
two-degree-of-freedom robot to prove its effectiveness.
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1 Introduction

The study of the control of rigid robotic manipulators has
attracted growing interest in the last decade both for sci-
entific investigations and industrial needs. In fact, robotic
manipulators play an important role in the industry by pro-
viding lower production cost, enhanced precision, quality
and productivity while having greater flexibility than spe-
cialized machines[1].

The control of rigid manipulators faces significant diffi-
culties such as highly nonlinear, highly time-varying, and
highly coupled dynamic behavior. Moreover, there always
exists uncertainty in the system model such as external dis-
turbances, parameter uncertainty, and so on, which cause
unstable performance of the robotic system[2].

So far, sliding mode control is widely applied in the con-
trol of rigid robotic manipulators, thanks to its simplicity
and robustness properties[3−6]. The sliding mode control
is characterized by robustness to parameter variations and
insensitivity to disturbance[7−9], and it has been known as
a useful strategy to deal with uncertain systems. The basic
idea of the sliding mode control is to drive and maintain
the system trajectory on a sliding surface designed a pri-
ori in the state space. When the sliding mode is achieved,
the system dynamics is described by the dynamics of the
surface, and then it becomes insensible to uncertainties sat-
isfying the matching condition. However, the sliding mode
control guarantees only an asymptotic convergence. The
terminal sliding mode control has been proposed to have a
fast finite time convergence[10], and it has been applied to
robotic manipulators[11−16]. In [11, 12] a robust multi-input
multi-output (MIMO) terminal sliding mode controller is
proposed for robotic manipulators. A finite time conver-
gence is guaranteed and a reduced gain of the terminal slid-
ing mode controller is obtained with respect to high gain
of linear sliding mode controller. To reduce the chatter-
ing, the authors used a boundary layer. The proposed con-
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troller depends on the upper bound of parameter uncertain-
ties. Unfortunately, due to the complexity of the structure
of uncertainties in the dynamics of robotic manipulators,
such bound will not be easily obtained. An adaptive termi-
nal sliding mode control is proposed in [13, 14] to estimate
the upper bound of uncertainties. However, the controls
are discontinuous and in [13] five parameters must be ad-
justed. Also, an adaptive terminal sliding mode control is
proposed in [17], where less parameters are estimated with
a finite time convergence. In this paper, we propose a new
robust adaptive terminal sliding mode control for tracking
problems of rigid robotic manipulators. With this control,
a finite time convergence of the error is guaranteed and a
prior knowledge of parameter uncertainty and disturbances
is not needed because the proposed controller can estimate
the upper bound of these uncertainties. Also, the proposed
controller eliminates the chattering effect without losing the
robustness property and the precision.

This paper is organized as follows. The robot model is
presented in Section 2. A continuous terminal sliding mode
is exposed in Section 3. In Section 4, the proposed adaptive
terminal sliding mode control is elaborated. The stability of
this control is proved by the Lyapunov theory. Simulation
results are given in Section 5. Finally, conclusions are given
in Section 6.

2 Robot model

Consider the dynamics of an n-link rigid robotic manipu-
lator described by the following second-order nonlinear vec-
tor differential equation[17]

M(q)q̈ + C(q, q̇) + G(q) = u + d(t) (1)

where q is an n-dimensional vector of joint angles, M(q)
is the n × n inertia matrix, C(q, q̇) is the Coriolis and
centrifugal terms, G(q) is the gravitational torque, u is
the n-dimensional vector of input torque, and d(t) is the
n-dimensional vector of the bounded input disturbance,
‖d(t)‖ < d1 where d1 > 0.
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Because of modeling error, parameter variations and un-
known load, it is assumed that the dynamic model of
the rigid manipulator (1) presents uncertainty. Therefore,
M(q), C(q, q̇), and G(q) can be written as

M(q) = M0(q) + ∆M(q) (2)

C(q, q̇) = C0(q, q̇) + ∆C(q, q̇) (3)

G(q) = G0(q) + ∆G(q). (4)

Then, from (2)–(4), (1) can be written in the following
form

M0(q)q̈ + C0(q, q̇) + G0(q) = u + ρ(t)

where ρ(t) is defined as

ρ(t) = −∆M(q)−∆C(q, q̇)−∆G(q) + d(t).

Some assumptions are used as below:
Assumption 1. The norm of inertia matrix M(q) is up-

per bounded by a positive number α0
[17]

‖M(q)‖ < α0.

Assumption 2. The following inequality is verified

‖C(q, q̇) + G(q)‖ < β0 + β1‖q‖+ β2‖q̇‖2

where β0, β1, and β2 are positive numbers. It is shown in
[17] that the uncertainty is input related and if the control
input does not contain the acceleration signal, the system
uncertainty will be bounded by a positive function of the
position and velocity measurements in the following form

‖ρ(t)‖ < b0 + b1‖q‖+ b2‖q̇‖2. (5)

This bounded property has been used by some re-
searchers of [15–18].

3 Continuous terminal sliding mode
control

The trajectory tracking control of the robot manipulator
can be formulated as follows: let qd ∈ Rn be a given twice
differentiable desired trajectory, and define the tracking er-
ror as e1 = q−qd; the control objective is to find a feedback
control law u such that the manipulator output q tracks the
desired trajectory qd, the tracking error converges to zero in
finite time. For this purpose, consider the terminal sliding
surface[16−21]

S = e2 + Ce
a
b
1 (6)

where e2 = q̇ − q̇d, C = diag{c1, · · · , cn}, and a and b are
odd integers satisfying 0 < a < b.

The dynamic error corresponding to (1) is





ė1 = e2

ė2 = −q̈d −M0(q)
−1(C0(q, q̇) + G0(q))+

M0(q)
−1u + M0(q)

−1ρ(t).

(7)

After choosing the sliding surface, the second step is to
determine a control law satisfying the sliding condition

STṠ < 0.

We can use the equivalent control method for this goal.
The equivalent control method is used to determine the
system trajectory on the sliding surface. When the initial
condition of the system is not on the sliding surface, the
control is the sum of a low-frequency control that is the
equivalent control ueq and a high frequency control ∆u[22].
The equivalent control is used to maintain the movement
of the system on the sliding surface and ∆u is a discontin-
uous control that drives the system trajectory to reach the
sliding surface. The equivalent control can be determined,
in the absence of disturbances and uncertainties, from

Ṡ = 0.

The expression of the equivalent control is then

ueq = M0(q)(q̈d − a

b
Cdiag{e

a
b
−1

1 }) + C0(q, q̇) + G0(q). (8)

The discontinuous term ∆u is[23]

∆u = −
(
STM0(q)

−1
)T

‖STM0(q)−1‖2×[‖S‖‖M0(q)
−1‖ (

b0 + b1‖q‖+ b2‖q̇‖2
)]

.

However, the discontinuous control ∆u can result in the
chattering problem, and to overcome this undesirable effect
∆u can be replaced by the following expression[23]

∆u1 =




− (STM0(q)
−1)T

‖STM0(q)−1‖2 [‖S‖‖M0(q)
−1‖×

(b0 + b1‖q‖+ b2‖q̇‖2)], if ‖STM0(q)
−1‖ > δ

− (STM0(q)
−1)T

δ2
[‖S‖‖M0(q)

−1‖×
(b0 + b1‖q‖+ b2‖q̇‖2)], if ‖STM0(q)

−1‖ < δ

where δ > 0.
The control applied to the rigid robotic manipulator is

u = ueq + ∆u1.

The continuous terminal sliding mode control eliminates
the chattering phenomenon at the cost of robustness prop-
erty, and this controller depends on the upper bound of the
uncertainties and disturbances which is difficult to deter-
mine.

4 Robust adaptive terminal sliding
mode control

Applying the terminal sliding mode control for rigid
robotic manipulators needs the knowledge of the upper
bound of uncertainties and disturbances in advance. How-
ever, in the case of manipulators, the complexity and un-
predictability of the structure of uncertainties may partic-
ularly cause certain difficulties in determining this bound.
Besides, to eliminate the chattering effect, an increase of
the parameter δ will generate the loss in robustness. To
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overcome these problems, we propose a new robust adap-
tive terminal sliding mode controller for the robotic ma-
nipulators described by (1), where the disturbance and the
uncertainty satisfy (2)–(4), in order to estimate the bound
of uncertainties and external disturbances online. Using
the sliding surface (6), the adaptive terminal sliding mode
control is proposed as follows

u = ueq + ∆u2 (9)

where ueq is defined in (8) and ∆u2 has the following ex-
pression

∆u2 =




− (STM0(q)
−1)T

‖STM0(q)−1‖2 [‖S‖‖M0(q)
−1‖×

(b̂0 + b̂1‖q‖+ b̂2‖q̇‖2)], if ‖STM0(q)
−1‖ > δ

− (STM0(q)
−1)T

δ2
[‖S‖‖M0(q)

−1‖×
(b̂0 + b̂1‖q‖+ b̂2‖q̇‖2)], if ‖STM0(q)

−1‖ < δ

where b̂0, b̂1, and b̂2 are the adaptive variables for b0, b1,
and b2 defined in (5). The adaptation laws are

˙̂
b0 = x0‖S‖‖M0(q)

−1‖

˙̂
b1 = x1‖S‖‖M0(q)

−1‖‖q‖ (10)

˙̂
b2 = x2‖S‖‖M0(q)

−1‖‖q̇‖2

where x0, x1, and x2 are arbitrary positive constants.
Theorem 1. If the control law (9), with the sliding sur-

face (6) and the adaptation law (10), is applied to the non-
linear uncertain system defined by (7), the error converges
to zero in finite time.

Proof. Let us consider the following positive definite
function as a Lyapunov function candidate

V =
1

2
STS +

1

2

2∑
i=0

x−1
i b̃2

i

where b̃i = bi − b̂i, i ∈ {0, 1, 2}.
Differentiating V with respect to time and using the con-

trol law (9) for ‖STM0(q)
−1‖ > δ yields

V̇ =ST[−q̈d −M0(q)
−1(C0(q, q̇) + G0(q))+

M0(q)
−1(ueq + ∆u2) + M0(q)

−1ρ(t)+

a

b
Cdiag{e

a
b
−1

1 }e2]−
2∑

i=0

x−1
i b̃i

˙̂
bi

V̇ =STM0(q)
−1ρ(t)− [STM0(q)

−1 (STM0(q)
−1)T

‖STM0(q)−1‖2×

‖S‖‖M0(q)
−1‖(b̂0 + b̂1‖q‖+ b̂2‖q̇‖2)]−

2∑
i=0

x−1
i b̃i

˙̂
bi

Simplifying and substituting
˙̂
bi by the expression defined

by (10), we obtain

V̇ =STM0(q)
−1ρ(t)−

‖S‖‖M0(q)
−1‖(b̂0 + b̂1‖q‖+ b̂2‖q̇‖2)−

‖S‖‖M0(q)
−1‖(b̃0 + b̃1‖q‖+ b̃2‖q̇‖2) =

STM0(q)
−1ρ(t)−

‖S‖‖M0(q)
−1‖(b0 + b1‖q‖+ b2‖q̇‖2) 6

‖S‖‖M0(q)
−1‖(‖ρ(t)‖ − (b0 + b1‖q‖+ b2‖q̇‖2) < 0

. ¤

5 Simulation results

The performance of the proposed controller is tested via
simulation on a two-degrees-of-freedom robot described by
the following model[17]

(
M11(q) M12(q)

M12(q) M22(q)

) (
q̈1

q̈2

)
+

(
C1(q, q̇)

C2(q, q̇)

)
+

(
G1(q)

G2(q)

)
=

(
u1

u2

)
+

(
d1(t)

d2(t)

)

where

M11(q) = (m1 + m2)L
2
1 + m2L

2
2 + 2m2L1L2 cos(q2) + J1

M12(q) = m2L
2
2 + m2L1L2 cos(q2)

M22(q) = m2L
2
2 + J2

C1(q, q̇) = −m2L1L2 sin(q2)q̇
2
1 − 2m2L1L2 sin(q2)q̇1q̇2

C2(q, q̇) = m2L1L2 sin(q2)q̇2

G1(q) = (m1 + m2)L1 cos(q2) + m2L2 cos(q1 + q2)

G2(q) = m2L2 cos(q1 + q2).

The nominal values of m1 and m2 are assumed to be[17]

m10 = 0.4 kg, m20 = 1.2 kg

and we suppose that we have an uncertainty on masses of
the order ±10% (see Figs. 1 and 2). The other system pa-
rameters are assumed to be known[17]:

L1 = 1m, L2 = 0.8m

J1 = 5kg·m, J2 = 5kg.

The disturbance vector is d(t) = [d1(t) d2(t)]
T, where

d1(t) = 0.2 sin(3t) + 0.02 sin(26πt)

d2(t) = 0.1 sin(2t) + 0.01 sin(26πt).

In this example, the initial values of the system are se-
lected as

[q1(0) q2(0)]T = [0.8 0.9]T

[q̇1(0) q̇2(0)]T = [0 0]T .
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Fig. 1 Variation of mass m1

Fig. 2 Variation of mass m2

We desire the two articulations track, respectively, the
following desired angular positions[17]

qd1 = 1.25− 7

5
exp(−t) +

7

20
exp(−4t)

qd2 = 1.4− 7

5
exp(−t) +

7

20
exp(−4t).

The chosen surface parameters are a = 5, b = 7, and
c1 = c2 = 2, and the initial conditions of the upper bound
of the uncertainty are b00 = 5, b10 = 14, and b20 = 2. The
results obtained for the continuous terminal sliding mode
control and the adaptive terminal sliding mode control are
given by Figs. 3 and 4. In order to have a small bound-
ary layer around the sliding surface to have a more robust
system, we have chosen small δ equal to 0.0005. However,
the control law is not totally continuous, and it presents
a high frequency commutation at the instant 1 s which is
undesirable in practice. Besides, the controller depends on
the upper bound of uncertainties and disturbances. By the
application of the new adaptive terminal sliding mode con-
trol, these problems are solved conserving the same param-
eter δ. In fact, the proposed control is continuous without
losing the robustness property, and the parameters of the
upper bound are estimated online. Figs. 5–7 present these
parameters. These results show a finite time convergence of
the upper bound parameters. In the presence of large un-
certainty, the terminal sliding mode control can give large
tracking error which is not the case in adaptive terminal
sliding mode control. In fact, according to the adaptive laws
(10), the control is adjusted to have a very small tracking
error. Therefore, the effect of the uncertainty can be elimi-
nated. The obtained results present some improvements in
convergence time of the error and control amplitude com-
pared to the results of [17].

Fig. 3 Tracking of the first joint with terminal sliding mode control (dotted line) and adaptive terminal sliding mode control (solid

line)

Fig. 4 Tracking of the second joint with terminal sliding mode control (dotted line) and adaptive terminal sliding mode control (solid

line)
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Fig. 5 Estimated parameter b̂0

Fig. 6 Estimated parameter b̂1

Fig. 7 Estimated parameter b̂2

6 Conclusions

In this paper, we have described the design of a new ro-
bust adaptive terminal sliding mode controller for the track-
ing problem of the rigid robotic manipulators. The main
feature of this design is that it combines the terminal slid-
ing mode control with a boundary layer and the adaptive

approach. This adaptive algorithm is used to estimate the
bounds of uncertainties and external disturbances. With
this controller, a finite time convergence of the error is guar-
anteed and the knowledge of the upper bound of the distur-
bances and uncertainties is not necessary. The simulation
results show that the algorithm can estimate this bound on-
line and can assure a good performance. In fact, the error
converges to zero in finite time and the proposed control
is robust to uncertainties and disturbances. Also, the pro-
posed control has eliminated the chattering phenomenon
without losing the robustness property and precision.
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