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Abstract: This note concerns the problem of the robust stability of uncertain neutral systems with time-varying delay and saturating
actuators. The system considered is continuous in time with norm bounded parametric uncertainties. By incorporating the free weighing
matrix approach developed recently, some new delay-dependent stability conditions in terms of linear matrix inequalities (LMIs) with
some tuning parameters are obtained. An estimate of the domain of attraction of the closed-loop system under a priori designed
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1 Introduction

The problem of delayed systems has been investigated
over the years because the phenomena of time-delay are
very often encountered in different technical systems, such
as electric, pneumatic, and hydraulic networks, chemical
processes, long transmission lines, etc. Time delay is often
a source of instability and oscillation in practical systems.
The robust stability of uncertain systems with time delays
has received considerable attention. Existing criteria for
asymptotic stability of time-delay systems can be classified
into two types: delay-independent stability[1, 2] and delay-
dependent stability[3−10]. The former does not include any
information on the size of delay while the latter employs
such information. It is well known that delay-independent
criteria tend to be conservative, especially when the size
of a delay is small. A major problem in the control of
linear dynamical systems with time delay is that the ac-
tuator saturations are unavoidable. The actuator satura-
tion not only deteriorates the control system performance,
but also leads to undesirable stability effects. The stabil-
ity analysis and stabilization of time delay systems with
saturating actuator have been widely investigated by many
researchers. References [11–13] have treated this problem
and obtained saturating control laws that govern the system
stability when the initial state belongs to an estimated do-
main. By using the Lyapunov method, a number of delay-
dependent robust stabilization techniques for a class of un-
certain state-delayed systems have been investigated via
predicted-based transformation[8]. Fridman and Shaked[4]

combined Park′s and Moon′s inequalities with a descrip-
tor model transform and found rather efficient criteria for
systems with polytopic-type uncertainties. Recently, a free
weighting matrix approach to overcoming the conservative-
ness of methods involving a fixed model transformation[6, 14]

is expected to be able to further improve the performance
when applied to delay-dependent stability with some tun-
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ing parameters. This has motivated the work in this pa-
per. In the more general case of neutral-type systems where
the delay appears in the state derivative and in the state,
several sufficient conditions have been obtained for delay-
independent[15] and the delay-dependent[16−23] cases. Note
that unlike retarded-type systems, neutral systems may be
destabilized by small changes in delays[24]. This work aims
to develop some delay-dependent methods for neutral sys-
tems with a time-varying delay, actuators constraints, and
norm-bounded parametric uncertainties via linear memory-
less state feedback control law. The control law serves to
guarantee the local stability of the closed loop system when
the initial states are taken in a predetermined region of at-
traction. In the following, a linear matrix inequality (LMI)
optimization approach will be proposed to design the state
feedback gain for maximizing this estimate of the domain of
attraction. A less conservative estimate of the region of at-
traction will be derived based on the Lyapunov-Krasovskii
functional approach. The conditions are given in terms of
LMIs. Note that the LMIs approach has the advantage that
it can be solved numerically very efficiently using the inte-
rior point algorithm developed in [25, 26] and using Matlab
LMI toolbox[27]. Three numerical examples are given to il-
lustrate that the results are less conservative than previous
work.

2 Problem formulation and definitions

Consider the following uncertain neutral system with
time-varying delay:

ẋ(t)− Cẋ(t− τ(t)) = (A0 + ∆A0(t))x(t) + (A1+

∆A1(t))× x(t− h(t)) + (B + ∆B(t))sat(u(t)),

t > 0 (1)
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where x(t) ∈ Rn is the state vector; u(t) ∈ Rm is the
control input; C, A0, A1, and B are known real constant
matrices. The delays τ and h are assumed to be some un-
known functions of time and are continuously differentiable,
with their respective rates of change bounded as follows:

0 6 h(t) 6 hm, 0 6 τ(t) < ∞ (2)

and
0 6 ḣ(t) 6 d1 < 1, 0 6 τ̇(t) 6 d2 < 1 (3)

where hm, d1, and d2 are given positive constants. Note
that condition (3) should be satisfied so as to ensure that
system (1) admits a physical meaningful solution compati-
ble with the causality principle (see [28] for more discussions
on varying delays and derivative bounds).

The initial condition of system (1) is given by

x(θ) = φ(θ), θ ∈ [−h̄, 0]

where h̄ = max{τ(t), h(t)}, ∀t > 0, and φ(·) is a differen-
tiable vector valued initial function.

Define the operator ∆ : C1[−h̄, 0] → Rn as ∆(xt) =
x(t)− Cx(t− τ).

Assumption 1. All the eigenvalues of matrix C are
inside the unit circle.

In this paper, we assume that the uncertainties can be
described as follows:

[∆A0(t) ∆A1(t) ∆B(t)] = DF (t)[E0 E1 E2] (4)

where D, E0, E1, and E2 are known constant real ma-
trices of appropriate dimensions, and F (t) denotes time-
varying parameter uncertainties and is assumed to be of
block diagonal form F (t) = diag{F1(t), · · · , Fr(t)}, where
Fi(t) ∈ Rpi×qi ; i = 1, · · · , r are unknown real time-varying
matrices satisfying FT

i (t)Fi(t) 6 I, ∀t > 0.
The saturation function is defined by

sat(u(t)) = [sat(u1(t)), sat(u2(t)), · · · , sat(um(t))]T (5)

and

sat(ui(t)) =





ui, if ui > ui

ui, if −ui 6 ui 6 ui

−ui, if ui < −ui.

Lemma 1[29]. Let D, E, and F (t) be real matri-
ces of appropriate dimensions with F = diag{F1, · · · , Fr},
FT

i Fi 6 I, i = 1, · · · , r. Then, for any real matrix
Λ = diag{µ1I, · · · , µrI} > 0, the following inequality is
true:

DF (t)E + ETF (t)TDT 6 DΛDT + ETΛ−1E.

In this paper, we consider the stabilization of system (1)
using a linear state feedback

u(t) = Kx(t). (6)

For an initial condition x0 = φ ∈ C1[−h̄; 0], denote the
state trajectory of system (1) by x(t, φ). Suppose that the
solution x(t) = 0 is asymptotically stable for all delays sat-
isfying (2). Then, the domain of attraction of the origin
is

Ψ = {φ ∈ C1[−h̄; 0] : lim
t→∞

x(t, φ) = 0}.

Moreover, we are interested in obtaining an estimate Ξδ ⊂
Ψ of the domain of attraction, where

Ξδ = {φ ∈ C1[−h̄; 0] : max
[−h̄;0]

|φ| 6 δ}

and where δ > 0 is a scalar to be maximized in the sequel.
Define the polyhedron

D(K, ū) = {x ∈ Rn; |kix| 6 ūi, i = 1, · · · , m}

where ki denotes the i-th row of K. We exploit the idea of
[11] in the development of the results of this paper. Denote
the set of all diagonal matrices in Rm×m with diagonal el-
ements that are 1 or 0 by N . Then, there are 2m elements
Di in N , where N denotes the set of diagonal matrices with
diagonal elements are 0 or 1, and for every i = 1, · · · , 2m,
D−

i = I −Di is also an element in N .
Lemma 2[11]. Given K and H in Rm×n, we have

sat(Kx(t)) ∈ Co{DiKx + D−
i Hx, i = 1, · · · , 2m}

for all x ∈ Rn that satisfy |hix| 6 ūi , i = 1, · · · , m.
Therefore, for x ∈ Sc, any compact set of Rn, let H be

in Rm×n such that |hix| 6 ūi. Then, the motion of the
system (1)–(4) can be described by the following system:

ẋ(t)− Cẋ(t− τ(t)) =

2m∑
j=1

λjÂjx(t) + A1x(t− h(t)) (7)

where Âj = B(DjK + D−
j H) + A0,

∑2m

j=1 λj = 1, λj > 0

A0 = A0 + DF (t)E0, A1 = A1 + DF (t)E1, and B =
B + DF (t)E2.

Choose a Lyapunov functional candidate to be

V (t) = xT(t)Px(t) +

∫ t

t−h(t)

xT(s)Qx(s)ds+

∫ 0

−hm

∫ t

t+θ

ẋT(s)Rẋ(s)dsdθ +

∫ t

t−τ(t)

ẋT(s)Wẋ(s)ds (8)

where P = PT > 0, Q = QT > 0, R = RT > 0,
W = WT > 0.

A convenient choice of the set Sc can be defined from a
symmetric positive definite matrix P as

De = {x(t) ∈ Rn; xT(t)Px(t) 6 β−1} (9)

where β is a positive scalar.

3 Main results

In this section, we will give some sufficient conditions for
(1)–(4) to be robustly stable.

Lemma 3. Under Assumption 1, the system described
by (1)–(4) is robustly stable if there exist P = PT > 0,
Q = QT > 0, R = RT > 0, W = WT > 0, and appropri-
ately dimensioned matrices Y1, Y2, T1, and T2 such that the
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following LMIs hold:

Γj =



Γ11(j) ΓT
21(j) ΓT

31 hmY1 T1C

Γ21(j) Γ22 ΓT
32 hmY2 T2C

Γ31 Γ32 Γ33 0 0

hmY T
1 hmY T

2 0 −hmR 0

CTTT
1 CTTT

2 0 0 −(1− d2)W




< 0

j = 1, · · · , 2m

(10)

where



Γ11(j) = T1Âj + ÂT
j TT

1 + Y1 + Y T
1 + Q

Γ21(j) = P + T2Âj + Y2 − TT
1

Γ22 = hmR + W − T2 − TT
2

Γ31 = A
T
1 TT

1 − Y T
1

Γ32 = A
T
1 TT

2 − Y T
2

Γ33 = −(1− d1)Q.

Proof. Calculating the derivative of V (t) along the so-
lution of system (1) and using (2) yields

V̇ (t) 6 2xT(t)P ẋ(t) + xT(t)Qx(t)− (1− d1)x
T(t− h(t))Q×

x(t− h(t)) + hmẋT(t)Rẋ(t)−
∫ t

t−h(t)

ẋT(s)Rẋ(s)ds+

ẋT(t)Wẋ(t)− (1− d2)ẋ
T(1− τ(t))Wẋ(1− τ(t)).

(11)

Using the free weighting matrix approach introduced in
[6], for appropriately matrices Y1, Y2, T1, and T2, we have

2[xT(t)T1 + ẋT(t)T2]× [−ẋ(t) + Cẋ(1− τ(t)) + Âjx(t)+

A1x(t− h(t))] = 0, j = 1, · · · , 2m

2[xT(t)Y1 + ẋT(t)Y2]× [x(t)− x(t− h(t))−
∫ t

t−h(t)

ẋ(s)ds] = 0.

For any positive semi-definite matrix

Z =




Z11 ZT
21 ZT

31

Z21 Z22 ZT
32

Z31 Z32 Z33


 > 0

and

η(t) =




x(t)

ẋ(t)

x(t− h(t))




we also have

hmηT(t)Zη(t)−
∫ t

t−h(t)

ηT(t)Zη(t)ds > 0.

Then, adding those terms to the right-hand side of (11),
letting

Ω(t, s) =

(
ξ(t, s)

ẋ(t− τ(t))

)
, Z =




Y1

Y2

0


 R−1




Y1

Y2

0




T

and using the Schur complement we obtain V̇ (t) 6∑2m

j=1 λjΩ
T(t, s)ΓjΩ(t, s).

Then, there exists π such that V̇ (t) 6 −π‖x(t)‖2, which
ensures the asymptotic stability of system (1)–(4) according
to [30]. ¤

Theorem 1. For given ε1, ε2 ∈ R, if there exist

Q = Q
T

> 0, R = R
T

> 0, W = W
T

> 0, X1 = XT
1 > 0,

X2, X3 ∈ Rn×n, U, G ∈ Rm×n, Λ = diag{µ1I, · · · , µrI} >
0, and positive scalars β, δ, satisfying the following linear
matrix inequalities1:

(
β ∗
gT

i ū2
i X1

)
> 0, i = 1, · · · , m (13)

where





Σ11 = X2 + XT
2 + ε1(X1A

T
1 + A1X1)

Σ21(j) = XT
3 −X2 + (A0 + ε2A1)X1+

B(DjU + D−
j G)

Σ22 = −XT
3 −X3 + DΛDT

and gi denotes the i-th row of G, then control law (6) with
K = UX−1

1 stabilizes system (1)–(4) for every initial con-
dition in Ξδ with




Σ11 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Σ21(j) Σ22 ∗ ∗ ∗ ∗ ∗ ∗ ∗
−ε1QAT

1 (1− ε2)QAT
1 −(1− d1)Q ∗ ∗ ∗ ∗ ∗ ∗

hmε1RAT
1 hmε2RAT

1 0 −hmR ∗ ∗ ∗ ∗ ∗
0 WCT 0 0 −(1− d2)W ∗ ∗ ∗ ∗

hmX2 hmX3 0 0 0 −hmR ∗ ∗ ∗
X2 X3 0 0 0 0 −W ∗ ∗
X1 0 0 0 0 0 0 −Q ∗

E0X1 + E2(DjU + D−
j G) 0 E1Q 0 0 0 0 0 −Λ




< 0

j = 1, · · · , 2m (12)

1The symbol ∗ stands for symmetric block in matrix inequalities.
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δ2 max{λmax(X
−1
1 ) + 2

hm

(1− d1)
λmax(Q

−1
);

2h2
mλmax(Q

−1
) +

1

(1− d2)
λmax(W

−1
)+

hmλmax(R
−1

)} 6 β−1. (14)

Proof. From the requirement that P = PT > 0, and the
fact that in (10), (−T2 − TT

2 ) must be negative definite, it

follows that P̃ is non-singular with

P̃−1 = X =

(
P 0

TT
1 TT

2

)−1

=

(
X1 0

X2 X3

)
.

Then, multiply both sides of (10) by diag{XT, I, I, I} and
diag{X, I, I, I}, and introduce some changes of variables
such that

X1 = P−1, Q = Q−1, R = R−1, W = W−1, U = KX1,

G = HX1,

(
N1

N2

)
=

(
X1Y1 + XT

2 Y2

XT
3 Y2

)
X1.

By the Schur complement[25], LMI (10) implies (15) with
Π21(j) = XT

3 − X2 + N2 + A0X1 + B(DjU + D−
j G). The

main difficulty in the application of condition (15) is the
presence of some nonlinearities such as X−1

1 , N1, and N2.
Unfortunately, the condition cannot be directly solved and
there is the need to tune the variables. To overcome this,
we choose

N1 = ε1A1X1, N2 = ε2A1X1 (16)

where ε1 and ε2 are some decision variables, and use the
simple procedure presented in Remark 3 in this section.

Using (16), we obtain the following inequality:

Mj + DF (t)E + E
T
FT(t)D

T
< 0, j = 1, · · · , 2m (17)

where Mj is shown at the bottom of this page, D̄ and Ē
are as follows:

D =
(

0 DT 0 0 0 0 0 0
)T

E =
(

E0X1 + Z 0 E1Q 0 0 0 0 0
)

where Z = E2(DjU + D̄jG).
According to Lemma 1, (17) holds if there exists Λ =

diag{µ1I, · · · , µrI} > 0 such that

Mj + DΛD
T

+ E
T
Λ−1E < 0. (18)

Thus, by the Schur complement, (18) is equivalent to (12)
of Theorem 1. Moreover, the satisfaction of LMI (13) guar-
antees that |hix| 6 ūi, ∀x ∈ De, i = 1, · · · , m. This can be
proven in the same manner as in [11–13].

Furthermore, following [22], the Lyapunov functional de-
fined in (8) can be shown to satisfy

π1‖Dφ‖2 6 V (φ) 6 π2 max
[−h̄,0]

|φ|2

with π1 = λmin(X−1
1 ) and

π2 = max{λmax(X
−1
1 ) + 2

hm

(1− d1)
λmax(Q

−1
);

2h2
mλmax(Q

−1
) +

1

(1− d2)
λmax(W

−1
) + hmλmax(R

−1
)}.

From V̇ < 0, it follows that V (t) < V (0) and therefore

xT(t)X−1
1 x(t) 6 V (t) < V (0) 6 max

θ∈[−h̄,0]
|φ(θ)|2π2 6 β−1.




X2 + XT
2 + N1 + NT

1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
Π21(j) −X3 −XT

3 ∗ ∗ ∗ ∗ ∗ ∗
−X−1

1 NT
1 A

T
1 −X−1

1 NT
2 −(1− d1)Q

−1 ∗ ∗ ∗ ∗ ∗
hmX−1

1 NT
1 hmX−1

1 NT
2 0 −hmR

−1 ∗ ∗ ∗ ∗
0 WCT 0 0 −(1− d2)W ∗ ∗ ∗

hmX2 hmX3 0 0 0 −hmR ∗ ∗
X2 X3 0 0 0 0 −W ∗
X1 0 0 0 0 0 0 −Q




< 0

j = 1, · · · , 2m (15)

Mj =




Σ11 ∗ ∗ ∗ ∗ ∗ ∗ ∗
Σ21(j) Σ22 ∗ ∗ ∗ ∗ ∗ ∗
−ε1QAT

1 (1− ε2)QAT
1 −(1− d1)Q ∗ ∗ ∗ ∗ ∗

hmε1RAT
1 hmε2RAT

1 0 −hmR ∗ ∗ ∗ ∗
0 WCT 0 0 −(1− d2)W ∗ ∗ ∗

hmX2 hmX3 0 0 0 −hmR ∗ ∗
X2 X3 0 0 0 0 −W ∗
X1 0 0 0 0 0 0 −Q



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Inequality (14) guarantees that for all initial functions
φ ∈ Ξδ, the trajectories of x(t) remain within De and V̇ < 0
along the trajectories of the closed loop system (7) which
implies that limt→∞ x(t) = 0. ¤

When C = 0, ∆A0 = 0, ∆A1 = 0, ∆B = 0, and the
matrices Z31, Z32, Z33 are zeros, the matrix Z can be re-

duced to Z =

(
Z11 ZT

21

Z21 Z22

)
. Let Z̃ =

(
Z̃11 Z̃T

21

Z̃21 Z̃22

)
=

XTZX. Then, following the same steps as in the proof of
Theorem 1, we obtain the following corollary.

Corollary 1. Consider the nominal system of (1)–(4).

For given ε1, ε2 ∈ R, if there exist Q = Q
T

> 0, R =

R
T

> 0, W = W
T

> 0, X1 = XT
1 > 0, X2, X3 ∈ Rn×n,

U, G ∈ Rm×n, and positive scalars β, δ, satisfying (13) and
the following LMIs:




Ω11 ∗ ∗ ∗ ∗
Ω21(j) Ω22 ∗ ∗ ∗
−ε1QAT

1 (1− ε2)QAT
1 −(1− d1)Q ∗ ∗

hmX2 hmX3 0 −hmR ∗
X1 0 0 0 −Q




< 0

j = 1, · · · , 2m




Z̃11 ∗ ∗
Z̃21 Z̃22 ∗

ε1RAT
1 ε2RAT

1 R


 > 0

where




Ω11 = X2 + XT
2 + ε1(X1A

T
1 + A1X1) + hmZ̃11

Ω21(j) = XT
3 −X2 + (A0 + ε2A1)X1+

B(DjU + DjG) + hmZ̃21

Ω22 = −XT
3 −X3 + hmZ̃22

then the system is asymptotically stabilized by K = UX−1
1

for any initial condition in Ξδ with

δ2 max{λmax(X
−1
1 ) + 2

hm

(1− d1)
λmax(Q

−1
);

2h2
mλmax(Q

−1
) + hmλmax(R

−1
)} 6 β−1.

Remark 1. By Corollary 1, if we take ε1 = 0, our result
reduces to Theorem 1 in [4, 12]. Clearly, ε1 = 0 is not the
best choice. This implies that our result is less conservative
than that of [4, 12]. This is an advantage of our result since
generally a comparison between results in terms of LMIs is
made by numerical examples while in this paper it is estab-
lished theoretically that our result is less conservative than
those of [4, 12].

Remark 2. The global stability cannot be ensured in
general. Furthermore, in general, when it is possible to
compute a global stabilizing control law[13], it is difficult to
simultaneously guarantee good performance and robustness
for the closed-loop system.

Theorem 1 provides a condition allowing us to compute
both a control law and a domain of attraction in which the
closed loop neutral system is robustly stable. It is inter-
esting to come up with a solution such that the domain of
initial conditions is the largest possible. However, from the

nonlinearity of (14), this is very difficult or even impossible.
Assume the following conditions:

X−1
1 6 σ1I, Q

−1 6 σ2I, R
−1 6 σ3I, W

−1 6 σ4I.

By Schur complement, the following LMIs are obtained:
(

σ1I I

I X1

)
> 0,

(
σ2I I

I Q

)
> 0, (19)

(
σ3I I

I R

)
> 0,

(
σ4I I

I W

)
> 0. (20)

It follows that condition (14) is satisfied if

δ2 max{σ1 + 2
hm

(1− d1)
σ2; 2h2

mσ2 + hmσ3 +
1

(1− d2)
σ4}

6 β−1

holds.
Combining the facts derived above, we can construct a

feasibility problem for given hm as follows:

Find Q, R, W, X1, X2, X3, U, G, Λ, β, ε1, ε2, δ, σi,

i = 1, · · · , 4

subject to X1 > 0, Q > 0, R > 0, W > 0, Λ > 0, β > 0,

δ > 0, σi > 0, i = 1, · · · , 4, and (12)–(14), (19), (20).
(21)

Given hm, if the above problem has a solution, we say that
there exists a controller u(t) = UX−1

1 x(t) that guarantees
stability of the saturated neutral system (1)–(4).

Remark 3. In the derivation of Theorem 1, two tuning
parameters ε1 and ε2 are introduced. An interesting ques-
tion is how to find the desired values of these parameters.
In this case, the desired values for ε1 and ε2 obtained cor-
respond to the largest bound of time delay for which it is
possible to find a feasible solution. A way to overcome the
computational difficulties of solving this problem consists
in considering the following algorithm:

Algorithm 1.
Step 1. Let β = 1 and fix hm0, hmstep, ε10, ε20, δ0 small

enough to have a feasible solution Q, R, W , X1, X2, X3,
U , G, Λ, σi, i = 1, · · · , 4 for (21).

Step 2. Let hm = hm0 + hmstep, ε1 = ε10, ε2 = ε20, and
solve (21).

Step 3. If (21) is feasible, let hm0 = hm, ε10 = ε1,
ε20 = ε2, and go to Step 2. Otherwise, hm = hm0− hmstep.

Step 4. If ε1 and ε2 are sufficiently large go to Step 5,
otherwise change ε1 and ε2, and go to Step 3.

Step 5. Stop, the desired values of ε1 and ε2 are ε10 and
ε20, respectively.

4 Numerical examples

In this section, we provide three numerical examples to
demonstrate that the proposed method gives less conserva-
tive results than the existing ones.

Example 1. Consider the nominal neutral system pro-
vided in [31] in the form of (1) with B = 0, ∆A0(t) = 0,
∆A1(t) = 0, ∆B(t) = 0, d1 = 0, d2 = 0, and

A0 =

(
−0.9 0.2

0.1 −0.9

)
, A1 =

(
−1.1 −0.2

−0.1 −1.1

)
,
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C =

(
−0.2 0

0.2 −0.1

)
.

The results are compared in Table 1. It can be seen that
the delay-dependent stability condition of Lemma 3 is less
conservative in the sense that the computed maximum de-
lay bound is larger.

Table 1 Comparison of maximal delay bounds of hm

Methods hm

Lien et al.[31] 0.3

Chen et al.[17] 0.5658

Fridman[19] 0.74

Lien and Chen[20] 0.8844

Park and Kwon[21] 1.3718

Yang et al.[23] 1.533

Chen[16] 1.5497

Lemma 3 1.7191

Example 2. We consider a state-feedback example,
taken from [4, 7] (C = 0, ∆A0(t) = 0, ∆A1(t) = 0, ∆B(t) =
0) where

A0 =

(
0 0

0 1

)
, A1 =

(
−1 −1

0 0.9

)
, B =

(
0

1

)
.

Now, we address the problem of finding a state-feedback
controller for guaranteeing stability of the above system.
Applying Corollary 1 of this paper, we take ε1 = 0.36,
ε2 = 0.43, d1 = 0, and d2 = 0. Table 2 gives a compar-
ison of several results of the maximum allowable bound of
delay and corresponding control gain.

Table 2 Stability bound of hm and control gain K

Methods hm Control gain

Li and Souza[7] hm 6 0.999 K = − (0.10452 749058)

Fridman and
hm 6 1.51 K = − (58.31 294.935)

Shaked[4]

Cho et al.[3] hm 6 1.6 K = − (0.001 1.0154)

Theorem 3
hm 6 1.8214 K = − (0.3670 1.3124)× 104

in this paper

Example 3. Consider the example given in [11]. The
system is described by (1) with C = 0, ∆A0(t) = 0,
∆A1(t) = 0, ∆B(t) = 0 and

A0 =

(
0.5 −1

0.5 −0.5

)
, A1 =

(
0.6 0.4

0 −0.5

)
,

B =

(
1

1

)
, ū = 5.

When d1 = 0, the delay is time-invariant. In [32], for

A11 =

(
0.55 0.6

0 −0.2

)
, the upper bound on the time de-

lay was found to be hm = 0.0332 . In [11], stabilization by a
saturated memoryless state feedback law was accomplished
for hm 6 0.35 with a maximum radius of the stability ball
of 0.9680.

Fridman et al.[12] gave a bound of hm = 1.854 according
to Theorem 1 therein, while by using Matlab LMI Toolbox
we obtain hm = 1.7543, with a stability radius δ = 0.1666.

By Theorem 1, for d1 = 0, d2 = 0, ε1 = 0.11, ε2 = 0.88,
β = 1, and hm 6 1.89, the closed-loop system is found
to be asymptotically stable with the stabilizing gain K =
− (5.3385 0.8452) and the stability ball radius δ = 0.119.

For ε1 = 0.46, ε2 = 0.82, and β = 1, the upper bound
on the time delay is found to be hm 6 2. For hm = 2, the
stabilizing gain is K = − (5.7702 0.9754), with a stability
ball radius of δ = 0.0718 .

Table 3 gives a comparison of stability ball radii for var-
ious constant delay values. From Table 3, we find that δ
increases when the system time delay hm decreases, and
our approach gives larger estimation of the domain of at-
traction.

By numerical simulation, we show in Fig. 1 the trajec-
tories of the saturated closed-loop system and the domain
of attraction for the state trajectories for hm = 0.35. The
outer ellipsoid is De and the inner ellipsoid has a circle ra-
dius of δ = 2.9089.

Fig. 1 Trajectories and estimate of the domain of attraction for

hm = 0.35

Table 3 Comparison of stability ball radii δ

Methods δ = 0.35 δ = 1 δ = 1.7543 δ = 1.8 δ = 1.89

Proposed method
2.9089 1.5001 0.4142 0.3514 0.119

ε1 = 0.11, ε2 = 0.88

Fridman et al.[12]
2.8386 1.4513 0.1666 Infeasibility

ε1 = 0, ε2 = 0.95

Cao et al.[11] 0.9680 Infeasibility
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5 Conclusions

In this paper, we have presented several new delay-
dependent robust stabilization conditions for neutral sys-
tems with saturating actuators. The method is based on a
transformation of the actuator saturation nonlinearities into
a convex combination of polytope, Lyapunov-Krasovskii
functional, and the free weighting matrices technique. A
state feedback control law governing the stability of the sys-
tem against perturbations is constructed by solving LMIs
depending on two tuning parameters. To overcome the dif-
ficulty in finding the best values of the tuning parameters
that give the largest bound of the delay h(t), an iterative
algorithm is proposed. An estimation of the domain of at-
traction is also proposed. It is also shown that our result
is more general and less conservative than those of [4, 12].
Numerical examples have shown that the approach of this
paper gives much less conservative results than the existing
ones in literature.
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“Diplôme d′Etudes supérieurs” (DES) and
doctorat d′état from University Sidi Mo-
hammed Ben Abellah, Faculty of Sciences,
Morocco in 1992 and 1997, respectively.
He is now a professor at the University Sidi
Mohammed Ben Abellah.

His research interests include robust con-
trol, time delay systems, systems with satu-
rating actuators, and H∞ control and neu-

tral systems.
E-mail: elh tissir@yahoo.fr (Corresponding author)


