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Abstract: This paper presents a novel general method for computing optimal motions of an industrial robot manipulator (AdeptOne
XL robot) in the presence of fixed and oscillating obstacles. The optimization model considers the nonlinear manipulator dynamics,
actuator constraints, joint limits, and obstacle avoidance. The problem has 6 objective functions, 88 variables, and 21 constraints. Two
evolutionary algorithms, namely, elitist non-dominated sorting genetic algorithm (NSGA-II) and multi-objective differential evolution
(MODE), have been used for the optimization. Two methods (normalized weighting objective functions and average fitness factor)
are used to select the best solution tradeoffs. Two multi-objective performance measures, namely solution spread measure and ratio
of non-dominated individuals, are used to evaluate the Pareto optimal fronts. Two multi-objective performance measures, namely,
optimizer overhead and algorithm effort, are used to find the computational effort of the optimization algorithm. The trajectories are
defined by B-spline functions. The results obtained from NSGA-II and MODE are compared and analyzed.
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1 Introduction

Many real-world design tasks involve complex multi-
objective optimization problems of various competing de-
sign specifications and constraints. For such problems, it
is highly improbable that all the conflicting criteria would
be extremized by a single design, and hence, a trade-off
among the conflicting design objectives is often inevitable.
In mathematics, multi-objective optimisation seeks to opti-
mise a vector of non-commensurable and often competing
objectives, cost functions or performance functions within
a feasible decision variable space. Intelligent robot system
design is one of the complex design problems.

The ultimate requirement of robotics is to create intel-
ligent robotic systems that can operate autonomously. At
present, robots are used to perform programmed, repeti-
tious tasks or tasks where a human operator has to con-
stantly specify motions. In case of autonomous robots, the
robot is provided with only descriptions of tasks on an ab-
stract level and will carry out those tasks without human
intervention or explicit teaching. In order to reach that
goal, more development should take place in technologies
of perception, which involves automated reasoning, plan-
ning, manipulation, and learning. One of the main plan-
ning problems is the trajectory planning, where the au-
tonomous robot has to plan its own motions, and, by virtue
of this motion, only the robot accomplishes its tasks. The
classic trajectory-planning problem is described as follows:
given an initial configuration and a final configuration of
the robot, it has to find a path connecting both configura-
tions that avoids collision with obstacles. Assumptions are
that the geometry and the position of obstacles are known
in advance, and obstacles are stationary.

In order to maximize speed of operation, which affects
the productivity in industrial situations, it is necessary to
minimize the total travelling time of the robot. Therefore,
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more research works have been carried out to get minimum
time trajectories[1−4].

The robot trajectory planning using energetic criteria
provides several advantages. It yields smooth trajectories
for easier tracking and reduces the stresses to the actuators
and to the manipulator structure. Moreover, saving energy
may be desirable in several applications, such as those with
a limited capacity of energy source (e.g., robots for space
or underwater exploration). Examples of energy optimal
trajectory planning are provided in some literatures. Both
optimal travelling time and minimum mechanical energy of
the actuators are considered together as objective functions
in some literatures[5,6].

Fields of research such as computer graphics, geomet-
ric design, and robotics (motion planning) prefer smooth
trajectories, which are achieved by minimizing the joints
jerk[7, 8] and joints acceleration[9]. Gasparetto et al.[7, 8]

considered only kinematic constraints. They did not con-
sider dynamic constraints such as joint torques. The con-
ventional method (numerical iterative procedure) used by
Elnager and Hussein[9] cannot be used for multi-objective
problems.

To obtain a practical trajectory (such that the robot does
not loose any degree of freedom at any stage), the manipula-
bility measure can be used as the decision criteria for robot
trajectory planning[10,11]. So in order to get all the above
benefits, all the objective functions have to be considered in
a combined manner to do optimal trajectory planning. But
none of literatures considered all these objective functions
in a combined manner.

Many authors have treated the problem of trajectory
planning of robot manipulators in the presence of fixed
obstacles[1,12]. When moving obstacles share the same
workspace occupied by the robot manipulator, the opti-
misation of the trajectory defined by the end-effector is
complex[1,5,6]. This complexity is associated with the large
number of constraints to be taken into account by the op-
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timiser. These constraints are time dependent in this case.
A design methodology using sequential unconstrained min-
imisation techniques is proposed by Saramago and Junior[5]

to obtain the optimal off-line trajectory planning of robot
manipulators, when oscillating obstacles have to be avoided
by the end-effector. Their problem of optimal trajec-
tory planning concerns with the determination of the end-
effector robot motion in a minimum time and minimum
mechanical energy between two given points, while satisfy-
ing the limits of the actuator efforts and avoiding collision
with oscillating and fixed obstacles.

The methods that are used in the literatures[1−3,5,6,9−14]

to tackle the complex instances (oscillating obstacles envi-
ronment) have some notable drawbacks: 1) they may fail to
find the optimal path (or spend a lot of time and memory
storage); and 2) they have limited capabilities when han-
dling cases where the constraints of maximum acceleration
and maximum deceleration along the solution curve are no
longer met, or where singular points or critical points of
robot configuration exist. To overcome the above draw-
backs, evolutionary algorithms can be used. The advan-
tages of evolutionary techniques are follows: 1) they are
population-based search algorithms, so global optimal solu-
tion is possible; 2) they do not need any auxiliary informa-
tion like gradients, derivatives, etc; 3) they can solve com-
plex and multimodal problems for global optimality; and 4)
they are problem independent, i.e., suitable for all types of
problems. Evolutionary techniques for multi-objective op-
timisation are currently gaining significant attention from
researchers in various fields due to their effectiveness and ro-
bustness in searching for a set of trade-off solutions. Unlike
conventional methods that aggregate multiple attributes to
form a composite scalar objective function, evolutionary
algorithms with modified reproduction schemes for multi-
objective optimisation are capable of treating each objective
component separately and lead the search in discovering the
best trade-off solutions.

The motivations for using population-based search tech-
niques are as follows:

1) The final solution obtained from a conventional math-
ematical optimization technique is always dependent on the
input (i.e., initial solution). The wrong selection of initial
solution may lead to local optimal solution. But in case
of population-based techniques, the final solution will not
depend on the initial solution. So, the final solution may
be a global optimal solution.

2) Population-based search techniques (e.g., evolution-
ary algorithms (EAs)) give multi directional search. They
deal simultaneously with a set of possible solutions (the so-
called population). This allows us to find several possible
solutions in a single run of the algorithm, instead of per-
forming a series of separate runs as in the case of traditional
mathematical programming techniques.

3) Optimizing all the objectives simultaneously and gen-
erating a set of alternative solutions offers more flexibility
to decision makers. The simultaneous optimization can fit
nicely with population-based approaches such as EAs be-
cause they generate multiple solutions in a single run.

4) When compared to conventional and mathematical
techniques available in literature[1−12], evolutionary algo-
rithms converge quickly and give more number of Pareto

optimal solutions.
5) Computational efficiency of evolutionary algorithms

is better than those of the conventional and mathematical
techniques available in literature[1−12].

6) Significant computational speed-up could be achieved,
because their running time is shorter than those of
conventional and mathematical techniques available in
literature[1−12].

Intelligent optimization algorithms such as non-
dominated sorting genetic algorithm (NSGA-II) and multi-
objective differential evolution (MODE) are very much
desirable for trajectory planning of an intelligent real world
robot. Trajectory planning for a real world robot is a very
complex and tedious task, due to the following reasons:

1) The planning algorithm has to consider the dynamic
model of the robot, which is depending on travelling time,
payload, and robot′s task. So the planning algorithm is a
time-dependent one.

2) In robot′s workspace, all types of obstacles (fixed,
moving, and oscillating obstacles) may be present. This
calls for the planning algorithm to consider all types of ob-
stacles for obstacle avoidance. Further, the information
about the obstacles may be partially or fully unknown.
Therefore, checking for the presence of obstacles collision
with robot is a very complex and time dependent task.

3) The environment around the robot is an ever-changing
one. This calls for planning algorithm to update the details
for trajectory planning for each time instant.

This paper considers all the decision criteria for the op-
timal trajectory planning of industrial robot manipulators
and the obstacle avoidance criteria for oscillating obstacles.
In this paper, two evolutionary algorithms, namely, NSGA-
II and MODE, are proposed to obtain optimal trajectory
planning for an industrial robot (AdeptOne XL robot).
Two methods, namely normalized weighting objective func-
tions and average fitness factor, are used to select the best
solution tradeoffs. Two multi-objective performance mea-
sures, namely solution spread measure and ratio of non-
dominated individuals, are used to evaluate the Pareto op-
timal fronts. Two multi-objective performance measures,
namely optimizer overhead and algorithm effort, are used to
find the computational effort of the optimisation algorithm.
These methods and metric are chosen since they have been
widely used for performance comparisons in multi-objective
optimisation[15].

A numerical application related to an industrial robot
manipulator (AdeptOne XL) is presented to illustrate the
methodology developed in this paper. All the decision cri-
teria of the optimal trajectory planning of industrial robot
manipulators, namely, minimal time, minimum mechani-
cal energy of the actuators, collision-free motion, maxi-
mization of manipulability measure, minimum accelerations
and minimum Jerks, are considered together in this work.
The obstacles are considered as objects sharing the same
workspace occupied by the robot. The obstacle avoidance
is expressed in terms of the distances between potentially
colliding parts, and the motion is represented using trans-
lation and rotational matrices. The dynamic model of
the robot is derived using Euler-Lagrange′s equations and
Lagrange′s energy function. The inertia terms of the actua-
tors and friction forces are included in the equations of mo-
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tion. The joint trajectory is formulated using uniform cubic
B-spline function, given only the initial and final configura-
tions. When obstacles are found in the three-dimensional
workspace, it is necessary to add penalty functions to the
multi-objective problem to guarantee free-collision motion.
The obstacles are protected by spherical or hyper-spherical
security zones, which would never be penetrated by the end-
effector.

This paper is organized as follows. Section 2 presents the
problem statement of this paper. In Section 3, a numerical
example is presented to illustrate the proposed optimisa-
tion methodology. Implementation of NSGA-II and MODE
algorithms is given in Section 4. In Section 5, the results
obtained from NSGA-II and MODE are presented and com-
pared. The conclusions are presented in Section 6.

Notations.
z1: Travelling time of the robot.
z2: Quadratic average of actuator torques.
z3 = fdis: Penalty parameter for free-collision motion.
z4: Manipulability measure.
z5: Integral of squared robot joint jerks.
z6: Integral of squared robot joint accelerations.
i: Robot joint number.
ui: The generalized forces.
J : Jacobian matrix of the robot.
Q = qi

j(t) = qji(t): Displacement of robot joint i at time
t.

V =
d(qi

j(t))

dt
= q̇ji(t) = q̇: Velocity of robot joint i at

time t.

W =
d2(qi

j(t))

dt2
= q̈ji(t) = q̈: Acceleration of robot joint i

at time t....
q ji(t) =

...
q : Jerk of robot joint i at time t.

J : Jacobian matrix of the robot.
QCj : Maximum displacement of robot joint i.
V Cj : Maximum velocity of robot joint i.
WCj : Maximum acceleration of robot joint i.
JCj : Maximum jerk of robot joint i.
UCj : Maximum force/torque of robot joint i.
n: Maximum number of the robot joints.
m: Maximum number of the knots used to construct the

trajectories.
dlq(t): Distance between the robot dl(t) and the obstacle

dq(t) at time t.
Id: The set of possibly colliding pairs of parts.
Dij : The inertial system matrix.
Cijk: The coriolis and centripetal forces matrix.
Gi: The gravity-loading vector.
ffc: The coulomb force coefficient.
fd: The viscous damping coefficient.
γi

j : The coefficients of the B-spline approximation for
qji(t) in the interval “Ij”.

(X0, Y0, Z0): The centre of an obstacle.
r0: The radius of the sphere that circumscribes this ob-

stacle.
rt: The distance between the centre of the obstacle and

a trajectory point.
nobs: The total number of obstacles in the workspace.
re: The eccentricity.
fc: Combined objective function.

q̇1: Velocity of robot joints at starting point.
˙qm: Velocity of robot joints at final point.

q̈1: Acceleration of robot joints at starting point.
q̈m: Acceleration of robot joints at final point.

2 Problem statement

An industrial robot manipulator (AdeptOne XL robot)
with 4 degrees of freedom is considered. The target is to
move the robot in a workspace avoiding the fixed and os-
cillating obstacles, while minimizing travelling time, me-
chanical energy of the actuators, joint jerks, joint acceler-
ations, penalty function to guarantee collision-free motion,
and maximizing manipulability measure of the robot taking
into account the physical constraints, actuator limits, and
obstacle avoidance. This problem has 6 objective functions,
21 constraints, and 88 variables (polynomial coefficients γi

j

of B-spline functions that represent the trajectories).
The singularity avoidance is chosen in the form of the ma-

nipulability measure. Maximizing the manipulability mea-
sure will force the manipulator away from the singularity.
The multicriterion optimisation problem is defined as fol-
lows:

Minimize total travelling time between initial and final

configurations = z1. (1)

Minimize quadratic average of actuator torques:

z2 =

∫ T

0

n∑
i=1

(ui(t))
2dt. (2)

Minimize penalty parameter for collision-free motion:

z3 = fdis. (3)

Maximize manipulability measure:

z4 = |det(J)| . (4)

Minimize integral of squared joint jerks:

z5 =

∫ T

0

n∑
i=1

(
...
q 2

i )dt. (5)

Minimize integral of squared joint accelerations:

z6 =

∫ T

0

n∑
i=1

(q̈2
i )dt. (6)

Subject to
1) Displacement constraint:

max |qji(t)| 6 QCj . (7)

2) Velocity constraint:

max |q̇ji(t)| 6 V Cj . (8)

3) Acceleration constraint:

max |q̈ji(t)| 6 WCj . (9)

4) Jerk constraint:

max |Jji(t)| 6 JCj . (10)
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5) Force/torque constraint:

max |uij(t)| 6 UCj for j = 1, 2, · · · , n and

i = 1, 2, · · · , m− 1. (11)

6) Obstacle avoidance constraint:

dlq(t) > 0 for (l, q) ∈ Id. (12)

2.1 Obstacle avoidance

The distance between potentially colliding parts is ex-
pressed as measure of obstacle avoidance. Further, the mo-
tion is represented using translation and rotational matri-
ces. When obstacles are found in the workspace, it is neces-
sary to add a penalty function in the multicriterion problem
to guarantee collision-free motion. The idea is to circum-
scribe each obstacle into a specific sphere (see Fig. 1). The
trajectory points (X, Y , Z), which are located outside the
sphere, are accepted according to the following equation:

rt =
√

(x− x0)2 + (y − y0)2 + (z − z0)2 > r0. (13)

If (13) is verified, the trajectory is out of the sphere, and
the penalty function (fdis) is zero. If the trajectory is tan-
gent or crossing the sphere, a penalty will be added to the
multicriterion problem.

Fig. 1 Obstacle circumscribed by a sphere

fdis =





0, if rt > r0

nobs∑
i=1

1

(min ri)2
, if rt 6 r0.

(14)

There are situations that need to consider the topology
of the obstacle. So it is more likely to circumscribe the
obstacle by an ellipsoid as shown in Fig. 2.

Fig. 2 Obstacle circumscribed by an ellipsoid

Let a, b, and c be the semi-axes of the circumscribing
ellipsoids and applying the same principle used for the cir-
cumscribing spheres. The trajectory points, which are lo-
cated outside the ellipsoid, are accepted according to the
equation:

re =
(x− x0)

2

a2
+

(y − y0)
2

b2
+

(z − z0)
2

c2
. (15)

Penalization used in this case is below:

fdis =





0, if re > 1
nobs∑
i=1

1

(min re)2
, if re 6 1.

(16)

In this way, the optimal control problem is to bring the
penalty function given by (14) or (16) to zero by taking into
account the kinematic, dynamic, and obstacle avoidance
constraints. Besides, constraints that describe minimal ac-
ceptable distance between potentially colliding parts are
also included in the general non-linear optimization prob-
lem. The obstacles are protected by spherical or hyper-
spherical security zones, which would never be penetrated
by the end-effector.

Checking obstacle avoidance criterion is a time-
consuming one. But in our case, it is not so due to the
following reasons:

1) The evolutionary algorithms give multi directional
search. They deal simultaneously with a set of possible
solutions (the so-called population). This allows us to find
several possible solutions in a single run of the algorithm,
instead of having to perform a series of separate runs as
in the case of the traditional mathematical programming
techniques.

2) The method used for checking obstacle avoidance in
this paper is a better one, and it could considerably tackle
any complex problem (e.g., industrial environment with
moving obstacles).

3) At present, due to the availability of very good com-
putational facilities such as high-speed computing, user-
friendly environment, virtual reality software, and efficient
programs of evolutionary algorithms, the checking of the
presence of obstacles can be done in a few seconds when
compared to conventional optimization techniques.

The geometry of AdeptOne XL robot has 4 cylinders
and 3 rectangular prisms. Here, the assumption is that
the shoulder joint and gripper are circumscribed by rect-
angular prisms. Also, the obstacles are rod (cylinder) with
sphere (oscillating obstacle) and 2 cubes (stationary obsta-
cles). In our paper, we considered the whole structure of
the robot manipulator along with all the obstacles. We
have considered 8 points (corner points) for cube and rect-
angular prism, 8 points for cylinder (4 quadrant points on
circular face on each side) and 4 quadrant points for sphere.
So 56 points for AdeptOne XL robot, 12 points for oscil-
lating obstacle and 16 points for stationary obstacles are
considered. All the points of AdeptOne XL robot and ob-
stacles are stored in separate arrays of software subroutine
for obstacle avoidance.

The sets dq(t) describe the points of the parts of the robot
as given by (1)–(6). The sets Cl characterize the shape of
the rigid bodies (parts of the robot), while Tl(t) and Rl(t)
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describe the translation and rotation of the bodies, respec-
tively, i.e.,

dq(t) = Tl(t)Rl(t)Cl. (17)

Each point in dq(t) can be calculated as




xl(ti)

yl(ti)

zl(ti)

1


 =




1 0 0 px(t)

0 1 0 py(t)

0 0 1 pz(t)

0 0 0 1


 ·




cos θ(ti) − sin θ(ti) 0 0

sin θ(ti) cos θ(ti) 0 0

0 0 1 0

0 0 0 1







xl(t0)

yl(t0)

zl(t0)

1


 (18)

where Px, Py, and Pz represent the translation, and θ(t)
represents the rotation of the points xl, yl, and zl.

Let a point on an obstacle be zl and a point that belongs
to the robot be zq. Let a set dl(t) define all points of the
obstacles. A set dlq(t) defines the distances between the
points in the sets dl(t) and dq(t). The distance between the
sets dlq(t) must be recalculated for all points at each time
instant t. Here, the obstacles are stationary, so changes in
position of points of the robot due to the movement of robot
are found by (7). Now, the software subroutine for obstacle
avoidance can find the distance between the robot points
and obstacle points. If dlq(t) > 0, then the corresponding
trajectory will be accepted by the software subroutine for
obstacle avoidance; otherwise, it will be rejected. In this
work, we have checked that there is no duplication of set of
points of the robot and obstacles. So the collision results
are reliable.

3 Numerical application

AdeptOne XL robot manipulator having four degrees of
freedom is considered here (see Fig. 3). The geometrical and
limiting parameters of AdeptOne XL robot are presented
in Tables 1 and 2, respectively[16]. It is considered that the
robot is initially at rest and comes to a full stop at the end
of the trajectory. Therefore, q̇1 = q̇m = q̈1 = q̈m = 0 for
all robot joints. In this application, the end-effector tra-
jectory (ψ1) of the AdeptOne XL manipulator has to avoid
two fixed obstacles (ψ3 and ψ4) and an oscillating obstacle
– pendulum (ψ2) as shown in Fig. 4. The goal is to ob-
tain the optimal trajectory under the constraints given in
Table 2[16]. In this problem, twenty-knot (m = 20) points
have been considered for the trajectory. Cubic B-spline
coefficients of the joint trajectories are considered as vari-
ables, and the total number of variables is 88. A pendulum
is considered as an oscillating obstacle, and two cubes are
considered as stationary obstacles. The geometrical details
of the obstacles are given below:

Cube 1. x1 = 0.7 and x2 = 1.1; y1 = 0.6 and y2 = 0.8;
z1 = 0.0 and z2 = 0.30.

Cube 2. x1 = 0.7 and x2 = 1.1; y1 = 1.27 and y2 = 1.47;
z1 = 0.0 and z2 = 0.21.

Pendulum. length l = 1m, x = l cos(α); z = h;
y = constant, α = arccos(1 − (h/l)), h = (v2

o − v)/(2g);
vo = 2m/s; g = 9.81m/s2, v = vo sin(3.14t).

Fig. 3 AdeptOne XL robot manipulator

Fig. 4 End-effector tridimensional optimal trajectory. (a)–(f):

Motions of end-effector through tridimensional optimal trajec-

tory

Table 1 Joint parameters for AdeptOne XL robot[16]

Joints ai (mm) αi di (mm) θi

1 425 1800 876 θ1

2 375 0 0 θ2

3 0 0 d3 0

4 0 0 204 θ4

Table 2 Limiting values for AdeptOne XL robot[16]*

Constraint 1 2 3 4

QC (rad) 2.6180 2.4435 203 4.7124

V C (rad/s) 11.3446 16.057 1200 57.5959

WC (rad/s2) 9.5 9.5 9.5 9.5

JC (rad/s3) 50 50 50 50

UC (N·m) 400 280 100 100

*Joint 3 – QC (mm), V C (mm/s), WC (mm/s2), JC (mm/s3),

UC (N·m).

4 Implementation of NSGA-II and
MODE algorithms

The steps for running the algorithms are summarized be-
low:
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Step 1. The following are the inputs to NSGA-II[17, 18]

and MODE[19] algorithms:
1) Details of AdeptOne XL robot: geometrical parame-

ters (see Table 1), and displacement, velocity, acceleration,
jerk, and torque limits of each robot joint (see Table 2).

2) Details of cubic B-spline curve that defines the tra-
jectory: total number of knot points considered = 20, the
initial and final configurations of the end-effectors are q1 =
[0.1682 rad, 1.3849 rad, 1.1362m, −0.7555 rad, −0.4702 rad,
0.1472 rad] and qm = [−0.7610 rad, 0.2450 rad, 1.4366m,
1.0095 rad, −1.0146 rad], and obstacle avoidance checking
(13).

3) The formulae to find objective functions (z1 to z6),
robot joints displacement (q), robot joints velocity (q̇),
robot joints acceleration (q̈), robot joints jerk (

...
q ), robot

joints torque (ui) at each time instant (1)–(18).
4) The formulae to find multi-objective performance

measures, namely, solution spread measure, ratio of non-
dominated individuals, optimiser overhead, and algorithm
effort.

5) The formulae to find combined objective function (fc)
and average fitness factor value (Favg). Based on these val-
ues, the best optimal solution from Pareto optimal front is
selected.

6) The variables bounds.
7) The values of the parameter that have been used in

the NSGA-II technique to get the best optimal solution
are variable type = real variable, population size = 100,
crossover probability= 0.7, real-parameter mutation prob-
ability= 0.01, real-parameter simulated binary crossover
(SBX) parameter= 10, real-parameter mutation parame-
ter= 100, total number of generations= 100. The values of
the parameter that have been used in the proposed MODE
technique for getting the best optimal solution are Strategy
= MODE/rand/bin, crossover constant CR = 0.9, number
of population NP = 500, F = 0.5, and total number of
generations=100.

Step 2. The software programs of NSGA-II and MODE
algorithms find the optimal variables in such a way that

1) Travelling time, mechanical energy of the actuators,
joint jerks, joint accelerations, and penalty function to guar-
antee collision-free motion are minimum, and manipulabil-
ity measure of the robot is maximum.

2) All constraints (joint limits, actuator limits, and ob-
stacle avoidance) are satisfied.

Step 3. Step 2 is repeated up to the maximum number
of iterations.

Step 4. The following are the outputs from NSGA-II and
MODE algorithms:

1) Pareto optimal fronts obtained from NSGA-II and
MODE. A Pareto optimal front gives the number of trade-
off solutions. Each solution has optimal objective function
value, optimal variable value and the constraint value. All
constraints will be satisfied by any solution in the Pareto
optimal front.

2) The optimal displacement Q (rad or m), velocity V
(rad/s or m/s) and acceleration W (rad/s2 or m/s2) of all
the robot joints.

3) The best optimal solution trade-off from Pareto opti-
mal fronts is selected by using the methods, namely, nor-
malized weighting objective functions and average fitness

factor in a combined manner. The best optimal solution
gives a safer, faster, economic, and smoother optimal tra-
jectory.

4) The strength of Pareto optimal fronts is evaluated by
the two multi-objective performance measures, namely, so-
lution spread measure and ratio of non-dominated individ-
uals.

5) The computational effort of NSGA-II and MODE algo-
rithms is calculated by the two multi-objective performance
measures, namely, optimiser overhead and algorithm effort.

5 Results and discussion

The optimal solution trade-offs obtained from NSGA-II
and MODE are given in Figs. 5 and 6, respectively. From
these figures, it is observed that NSGA-II gives optimal so-
lution trade-offs with more number of non-dominated solu-
tions for user′s choice than MODE. So NSGA-II technique
is the best one for this multicriterion optimization problem,
if the user wants more number of solution trade-offs for his
choice.

Fig. 5 Optimal solution trade-offs obtained from NSGA-II

Fig. 6 Optimal solution trade-offs obtained from MODE

The optimization algorithm that gives minimum com-
bined objective function (fc), maximum average fitness fac-
tor value (Favg), minimum solution spread measure (SSM),
maximum ratio of non-dominated individuals (RNI), min-
imum optimiser overhead (OO), and minimum algorithm
effort is the best one.

The results from NSGA-II and MODE are listed in
Tables 3–5. From Tables 3–5, it is observed that MODE
gives minimum combined objective function (fc), maximum
average fitness factor (Favg), minimum optimiser overhead
(OO), and minimum algorithm effort than NSGA-II. But
NSGA-II technique gives minimum solution spread measure
(SSM), and maximum ratio of non-dominated individuals
(RNI) than MODE.
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Table 3 Results obtained from NSGA-II and MODE algorithms

z1 z2 z3 z4 z5 z6 Favg

Zmax 1.0 9506597.528661 0.00005 0.157367 279.932092 269.784010 -

Zmin 0.848 9178597.575731 0.0 0.048277 119.843157 107.837977 -

NSGA-II 0.898 9178597.575731 0.0 0.048277 163.237956 156.112759 0.683650

MODE 0.848 9468839.987070 0.0 0.157367 119.843157 107.837977 0.852519

Table 4 Combined objective function and algorithm effort obtained from NSGA-II and MODE algorithms

Proposed Combined objective Simulation time No. of function Algorithm

algorithm function (fc) Trun(s) evolution (Neval) effort

NSGA-II 0.497040 2 87 0.02299

MODE 0.467136 2 124 0.01575

Table 5 SSM, RNI, and OO obtained from NSGA-II and

MODE algorithms

Technique SSM RNI OO

NSGA-II 0.01023 0.32 0.0769

MODE 0.02356 0.24 0.0324

In a combined manner, the two methods (normalized
weighting objective functions and average fitness factor
methods) are used to select the best optimal solution trade-
offs from the optimal solution trade-offs obtained from
NSGA-II and MODE. The best optimal solution tradeoffs
obtained from NSGA-II and MODE for the sample case
w1 = w2 = 0.25, w3 = w4 = 0.1, w5 = 0.15, and w6 = 0.15
are shown in Fig. 7. From Fig. 7, it is noted that MODE

gives best results for five objective functions (minimum val-
ues for z1, z3, z5, and z6, and maximum value for z4). It is
noted that MODE technique converges quickly than NSGA-
II. Also, the computational time to find optimum solution
tradeoffs in MODE is 0.33 of that of NSGA-II. So, MODE
is faster than NSGA-II. Hence, MODE technique is the best
one for this multicriterion optimization problem, if the user
wants a best optimal solution trade-off very quickly. Figs. 8
and 9 show the optimal displacement (Q = qi

j(t) (rad or
m)), velocity (V = d(qi

j(t))/dt (rad/s or m/s)), and acceler-
ation (W = d2(qi

j(t))/dt2 (rad/s2 or m/s2)) of all the robot
joints obtained from MODE and NSGA-II. From Figs. 8 and
9, it is noted that the robot joints displacement, velocity,
and acceleration are within their limiting values.

Fig. 7 Best optimal solution tradeoffs obtained from NSGA-II and MODE

(a) Joint 1 (b) Joint 2

(c) Joint 3 (d) Joint 4

Fig. 8 Optimal motions of the robot joints obtained from MODE
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(a) Joint 1 (b) Joint 2

(c) Joint 3 (d) Joint 4

Fig. 9 Optimal motions of the robot joints obtained from NSGA-II

6 Conclusions

A new and general methodology for off-line tridimen-
sional optimal trajectory planning of the industrial robot
manipulator (AdeptOne XL) in the presence of fixed and os-
cillating obstacles using NSGA-II and MODE is presented.
Obstacle avoidance is obtained by adding penalty func-
tions to the multicriterion problem. When dealing with
fixed and oscillating obstacles, all the objective functions
and the constraint functions have to be updated simultane-
ously at each time instant. Two methods, namely, normal-
ized weighting objective functions and average fitness factor
are combinedly used to select the best solution tradeoffs.
Two multi-objective performance measures, namely, solu-
tion spread measure and ratio of non-dominated individu-
als, are used to evaluate the Pareto optimal fronts. Two
multi-objective performance measures, namely, optimizer
overhead and algorithm effort, are used to find the com-
putational effort of an optimization algorithm. A numeri-
cal application demonstrated the efficiency of the proposed
algorithms. From the results, it is concluded that MODE
technique is the best one for this multicriterion optimization
problem, if the user wants a best optimal solution trade-
off very quickly. Also, NSGA-II technique is the best for
this multicriterion optimization problem, if the user wants
more number of solution trade-offs for his choice. In the
future, instead of B-spline function, non uniform rational
B-spline (NURBS) function will be used to represent the
trajectory for better accuracy. A general-purpose compre-
hensive user-friendly software package has been developed
for MODE algorithm using VC++ to obtain the optimal
trajectory planning. This software can be used for the de-
sign optimisation problems in any field.

This work opens the door for further investigations on
how the evolutionary optimization techniques can be used
to solve complex problems.
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