
International Journal of Automation and Computing 7(1), February 2010, 123-131

DOI: 10.1007/s11633-010-0123-6

A Bit-level Text Compression Scheme Based on

the ACW Algorithm

Hussein Al-Bahadili1 Shakir M. Hussain2

1Arab Academy for Banking and Financial Sciences, Amman 11942, Jordan
2Faculty of Information Technology, Petra University, Amman 11196, Jordan

Abstract: This paper presents a description and performance evaluation of a new bit-level, lossless, adaptive, and asymmetric data
compression scheme that is based on the adaptive character wordlength (ACW(n)) algorithm. The proposed scheme enhances the
compression ratio of the ACW(n) algorithm by dividing the binary sequence into a number of subsequences (s), each of them satisfying
the condition that the number of decimal values (d) of the n-bit length characters is equal to or less than 256. Therefore, the new
scheme is referred to as ACW(n, s), where n is the adaptive character wordlength and s is the number of subsequences. The new
scheme was used to compress a number of text files from standard corpora. The obtained results demonstrate that the ACW(n, s)
scheme achieves higher compression ratio than many widely used compression algorithms and it achieves a competitive performance
compared to state-of-the-art compression tools.

Keywords: Data compression, bit-level text compression, ACW(n) algorithm, Huffman coding, adaptive coding.

1 Introduction

Text compression is usually obtained by substituting a
shorter symbol for an original symbol in the source data,
which should contain the same information but with a
smaller representation in length. Text compression often
derives its benefit from the views of its textual content,
where the content can be seen as a stream of syllables or
words[1,2].

Transforming text characters into a stream of syllables
or words is not an easy process. The transformation heav-
ily influences almost all inner data structures, because they
must be able to work with undefined (and often high) num-
ber of syllables or words instead of the original alphabet of
256 characters, which need to be exported from the encoder
to the decoder[3−5].

Text compression can also be handled at bit-level, as each
character has its specific binary representation. Little work
has been done to exploit bit-level compression, and most
of the existing work demonstrates limited advantages over
other data compression algorithms of all types[6].

This paper presents and evaluates the performance of
a new bit-level, lossless, adaptive, and asymmetric data
compression scheme that is based on the adaptive char-
acter wordlength (ACW(n)) algorithm[7]. The new scheme
introduces a number of modifications to the ACW(n) al-
gorithm to enhance its performance. The main idea be-
hind this scheme is to subdivide the binary sequence into
a number of subsequences (s), each of them satisfies the
condition of having the number of the different decimal val-
ues (d 6 256). Therefore, we refer to this new scheme as
ACW(n,s) scheme.

To further enhance the performance of the ACW(n,s)
scheme, an efficient character-to-binary coding format,
namely, the adaptive coding format, is introduced. This
coding format yields a low entropy binary sequence so that

Manuscript received September 10, 2008; revised April 20, 2009

it grants higher compression ratio.
The rest of this paper is organized as follows. Section

2 reviews some of the most recent bit-level data compres-
sion algorithms. In Section 3, a detailed description of
the ACW(n) algorithm is given. The proposed ACW(n, s)
scheme is described in Section 4. Experimental results that
quantify the compression ratio of the new scheme, over a
number of text files from standard corpora, are presented
and discussed in Section 5. The results obtained are com-
pared with a number of widely used data compression algo-
rithms and state-of-the-art software. Finally, in Section 6,
conclusions are drawn and recommendations for future work
are pointed-out.

2 Literature reviews

A large number of data compression algorithms have
been developed and used throughout the years. Some of
which are of general use, i.e., can be used to compress files
of different types (e.g., text files, image files, video files,
etc.)[2,4,8,9]. Others are developed to efficiently compress a
particular type of files. This paper is concerned with text
compression algorithms, which can be classified, according
to the representation form of the data at which the com-
pression process is performed, into two classes. These are:
syllable or word based text compression algorithms and bit-
level text compression algorithms.

Syllable or word-based text compression algorithms are
beyond the scope of this paper; therefore; in this section,
we shall only review some of the most recently developed
bit-level text compression algorithms. On the other hand,
detail descriptions and extensive literature reviews on sylla-
ble or word-based text compression algorithms can be found
in [1–5, 10–13].

In [14], a novel lossless binary data compression
algorithm based on the error correcting Hamming
codes, namely, the Hamming codes based data compression



124 International Journal of Automation and Computing 7(1), February 2010

(HCDC) algorithm, was proposed. In this algorithm, the
binary sequence is subdivided into blocks of n bits length,
and each block is considered as Hamming codeword that
consists of p parity bits and d data bits (n = d + p). The
analytical analysis shows that a maximum compression ra-
tio of n over d+1 can be achieved by this algorithm.

In [6], an adaptive bit-level text compression scheme that
is based on the HCDC algorithm was introduced. The
scheme consists of six steps, some of which are repetitively
applied to achieve higher compression ratio. The repetition
loops continue until inflation is detected and the compres-
sion ratio is equivalent to the multiplication of the com-
pression ratios of the individual loops; therefore, the new
scheme is referred to as HCDC(k), where k refers to the
number of repetition loops. The maximum number of rep-
etition loops before inflation detected was found to be 6 6
loops and reached a 1.6–2.6 compression ratio.

A bit-level file compression algorithm was proposed in
[15], in which a set of groups of bits were considered as
minterms representing a Boolean function. Then, some al-
gebraic simplifications were made on these functions to re-
duce the number of minterms and hence the size of the bi-
nary sequence. The maximum compression ratio achieved
was not more than 10%.

An approach to universal noiseless compression scheme,
based on error correcting codes, was presented in [16]. The
scheme was based on concatenation of Burrows-Wheeler
transform (BWT) with low-density parity-check (LDPC)
code. The scheme has linear encoding and decoding times.

A fixed-length Hamming (FLH) algorithm was intro-
duced in [17] as an enhancement to Huffman coding (HU)
to compress text and multimedia files. The investigation
and testing on these algorithms, on different texts and mul-
timedia files, indicated that the FHL following HU and HU
following FLH enhance the compression ratio by a factor of
not more than 20 %.

A fast text compression with neural network model was
introduced in [18]. It produces better compression than
popular Limpel-Ziv compressors (zip, gzip, and compress),
and is competitive in time, space, and compression ratio
with prediction by partial matching (PPM) and BWT al-
gorithms. It was concluded that it is practical to use neural
networks for text compression in any application that re-
quires a high speed.

3 The ACW(nnn) algorithm

In the ACW(n) algorithm[7], first, the source file is con-
verted into binary sequence using a certain character- to-
binary coding format (e.g., the well-known ASCII coding).
The binary sequence is then subdivided into blocks of n-bit
length. The equivalent decimal value for each block is calcu-
lated, and if the total different decimal values d 6 256, com-
pression can be performed using n-bit character wordlength.
Otherwise, another value of n should be examined. This it-
erative process continues until a specific value of n satisfies
the above condition; otherwise, the binary sequence cannot
be compressed. Therefore, this algorithm is referred to as
ACW(n) algorithm.

If a specific value of n satisfies the above condition, the
different decimal values are sorted in an ascending or de-

scending order such that each block is then converted into
character according to its sequence number but not accord-
ing to its actual decimal value. In order not to make the bi-
nary sequence mixed up during the decompression process,
these sorted values should be stored with other information
(e.g., n, d) at the compressed file header.

The probability of satisfying the condition of d 6 256 is
inversely proportional to n and it is given as p = 28−n. For
example, the probabilities of d 6 256, for n = 9 and n = 10,
are 0.5 and 0.25, respectively.

There main issues of the ACW(n) algorithm can be sum-
marized as follows:

1) The binary sequence can be compressed using n−bit
character wordlength only if d 6 256.

2) The probability to successfully compress the binary
sequence using n-bit character wordlength is inversely pro-
portional to n.

3) Finding the optimum value for n that provides the
maximum compression ratio is a time-consuming process,
especially for large binary sequences.

4) Converting text to binary using the characters ASCII
code yields a high entropy binary sequence, which means
that either little or no compression can be achieved.

These issues can be considered as drawbacks that may
degrade the performance of the ACW(n) algorithm.

4 The ACW(nnn,sss) scheme

In order to enhance the performance of the ACW(n) algo-
rithm and tackle all consequences of the above issues, the bi-
nary sequence is subdivided into a number of subsequences
(s), each of them satisfying the condition that d 6 256.
Therefore, the new scheme is referred to as ACW(n, s). By
subdividing the original binary sequence into subsequences,
we can eliminate the first downside of d 6 256 and conse-
quently the worry of having low success probability, if large
value of n is chosen.

To further enhance the performance of the ACW(n, s)
algorithm, an adaptive coding format was introduced in
which the original characters were coded to binary accord-
ing to their probability of occurrence. This coding format
reduces the entropy of the binary sequence so that a higher
compression ratio is granted. Definition of entropy and the
way the adaptive coding is working are given below.

In information theory, entropy is a measure of the infor-
mation content of a message, where a message is defined as
a stream of characters or symbols. The entropy of a charac-
ter (symbol) is represented as the negative logarithm of its
probability or frequency of occurrence within the message.
Consequently, the entropy of a complete message would be
the sum of the entropies of the individual characters, which
is expressed as[19]

H = −
d∑

i=1

pi log2pi (1)

where H is the entropy in bits, and pi is the estimated prob-
ability of occurrence of each character within the message.

In adaptive coding, first, the character frequencies are
calculated and sorted in a descending order from the most
common character (MCC) to the least common character



H. Al-Bahadili / A Bit-level Text Compression Scheme Based on the ACW Algorithm 125

(LCC). Second, the MCC is assigned a sequence number
(SN) of 0, while the LCC is assigned an SN of d− 1. Then,
each character is converted into binary according to the bi-
nary representation of its SN. For example, consider the
coding of the message “ababac”. The message contains
three characters (d = 3) and their frequencies of occur-
rence are as follows: three “a”, two “b”, and one “c”. So,
the MCC is “a” and the LCC is “c”. Consequently, “a” is
assigned an SN of 0, while “b” and “c” are assigned SNs
of 1 and 2, respectively. Therefore, using adaptive cod-
ing, the equivalent binary code of “a” would be the 7-bit
binary representation of the number 0, which is 0000000.
Similarly, the equivalent binary codes of “b” and “c” are
0000001 and 0000010, respectively. Table 1 shows the fre-
quency of occurrence of each character and its ASCII and
adaptive equivalent codes.

Table 1 Character codes of the message “ababac”

Character No. of characters ASCII code Adaptive code

a 3 1100001 0000000

b 2 1100010 0000001

c 1 1100011 0000010

Table 2 presents the message equivalent binary code us-
ing ASCII and adaptive codes, the length (N) of the binary
sequence in bits, and the number of “0” and “1” in each
sequence. Thus, applying (1), with c = 2 (we have only
two symbols “0” and “1”), and p(0)/p(1) is the number
of “0”/“1” divided by N , yields entropies of 68.86% and
25.73% for the ASCII and the adaptive coding formats,
respectively.

Table 2 Binary sequences of the message “ababac”

Coding Message binary Message Number Number

format code length of “0” of “1”

N (bit)

1000011 0100011

ASCII 1000011 0100011 42 23 19

1000011 1100011

0000000 1000000

Adaptive 0000000 1000000 42 39 3

0000000 0100000

The ACW(n, s) scheme compression/decompression al-
gorithms as shown as Algorithms 1.

Algorithm 1. The ACW(n, s) compressor
Construct the binary sequence using any character-to-

binary coding format, e.g., ASCII coding, Huffman coding, adap-
tive coding, etc.

Do
Select a character wordlength (n)
Subdivide the binary sequence into blocks (B) of n-bit

length and add padding bits (g) if the length of the last block is
less than n-bit

Set s = 0; //Subsequences counter
Set m = 0; //Total blocks counter
Do

Set s = s + 1;
Set d = 0;//Different decimal values counter
Set k = 0;//Blocks counter for each subsequence
Do

Read n-bit block
m = m + 1;
k = k + 1;
Compute the equivalent decimal value (D)
Search for D in the computed d-1 values
If (D) have not found, then

Set d = d + 1;
· · ·

Loop until (d > 256) or (m ≥ B) //B is the total
number of blocks

Process these different decimal values and construct the
subsequence header;

· · ·
Loop until (m > B)
Compute the compression ratio.

Loop until (n > nmax) //nmax is the maximum value for
n set by the user

Find the optimum character wordlength (n)
Construct the compressed file header
Re-read the binary sequence in blocks of n-bit character

wordlength

Convert each block into characters using its sequence num-

ber and store them into the compressed file.

Algorithm 2. Algorithm for the ACW(n,s) decompres-
sor

Read the compressed file header to define the values of V , F ,
n, g, s, L[·], N [·]

For (i =; i 6 s; i++) //Loop over all subsequences
{

For (j =; j 6 L[i]; j++) //L[i] is the number of blocks
within the i-th subsequence

{
Read a data character
Find its equivalent decimal number
Use this decimal value as a sequence number to retrieve

the equivalent decimal value stored in the subsequence header
Convert this decimal value into n-bit block

}
}
Convert the binary sequence into characters according to the

coding format and store them in the decompressed file.

4.1 The compressed file header

In order not to make the codes mixed up during the de-
compressing process, some information needs to be stored
in the compressed file header as shown in Fig. 1. The size of
the header is directly proportional to the number of subse-
quences; therefore, an optimization mechanism is required
in finding the values of n and s, which yields a maximum
compression ratio.

Fig. 1 The compressed file using the ACW(n,s) scheme



126 International Journal of Automation and Computing 7(1), February 2010

The compressed file header of the ACW(n, s) scheme
consists of the following fields:

1) ACW field (8-byte),

2) Coding field (coding format dependent),

3) Sequence field (8-byte),

4) Subsequence fields (ACW(n,s) dependent).

4.1.1 ACW field (SACW )

The ACW field (SACW ) is an 8-byte field enclosing infor-
mation related to the ACW(n,s) algorithm, such as algo-
rithm name (ACW), algorithm version, coding format, and
character wordlength. The constituents of this field are kept
similar to the first 8-bytes in the ACW(n) algorithm. Table
3 lists the constituents of this field and their description.

Table 3 Compressed file header

Field Length Description

ACW 3 Name of algorithm

V 1 Version of the algorithm

F 1 Coding format

Char(n) 1 The character wordlength

Char(d) 1 The number of the different

decimal values

Char(g) 1 The number of padding bits

added to the last block

D1 to Dd L The actual decimal values the

blocks may have

4.1.2 Coding field (SF )

The coding field (SF ) encloses information related to the
coding format, so that their content depends on the coding
format indicated in the ACW field. This field is not re-
quired for the ASCII coding format. For the adaptive cod-
ing, it contains the number of characters within the source
file and a list of these characters after sorting (Nc+1), while
for Huffman coding, it enfolds the same components as in
standard Huffman compression algorithm.
4.1.3 Sequence field (SS)

The sequence field (SS) is an 8-byte field that contains
the number of subsequences in the first 4-byte, and the last
4-byte remain unused for future development.
4.1.4 Subsequence fields (SSub)

The subsequence fields (SSub) enfold the subsequences
information. It consists of two subfields. The first one is
a fixed 8-byte subfield that includes the subsequence num-
ber (4-byte) and the number of the different decimal values
within the subsequence (d) (1-byte). Three bytes are kept
unused for future development.

The second subfield has a variable length, which is re-
ferred to as L, and it contains different decimals values of
the blocks. The total length of the subsequence fields is
given by

SSub = s(8 + L) (2)

L =





2n

8
, for n 6 11

d
⌈n

8

⌉
, for n > 12

(3)

As shown in Fig. 1, the size of the compressed file header
(SH) in bytes is given by

SH = SACW + SF + SS + s(8 + L). (4)

Since both SACW and SS are fixed 8-byte fields, (4) can
be simplified into

SH = 16 + SF + s(8 + L). (5)

Thus, as shown in Fig. 1, the size of the compressed file
(Sc) is given by

SC = SH + B (6)

where B is a positive integer number representing the num-
ber of blocks into which the binary sequence is subdivided.
For a binary sequence of N -bit length, B is calculated by

B =

⌈
N

n

⌉
. (7)

If the length of the last block is less than n-bit, then it
should be padded with “0”. The number of padding bits
(g), which is added to the last block, is calculated by

g = B · n−N. (8)

Substituting (5) and (7) for SH and B, respectively, into
gives

Sc = 16 + SF + s(8 + L) + B. (9)

4.2 Computing the compression ratio

The compression ratio of the ACW(n, s) scheme can be
expressed as

C =
So

Sc
=

So

16 + SF + s(8 + L) + dN/ne . (10)

By (10), C mainly depends on the values of s and n.In this
work, the compression algorithm starts by selecting a range
of n values, and then for each value of n, C is calculated.
The character wordlength selected to compress the source
file is the one that achieves the highest compression ratio.

5 Experimental results

In order to evaluate its performance, the ACW(n, s)
scheme is implemented using C++ language and used to
compress text files from standard corpora such as Calgary,
Canterbury, and Large Corpora[13,20].

At this stage, little effort has been taken to optimize the
runtime of the compression-decompression prototype codes;
therefore, only results obtained for the compression ratio
are presented.

In this paper, five experiments are performed and pre-
sented to evaluate and compare the performances of the
ACW(n,s) scheme.

Experiment 1. This experiment investigates the varia-
tion of C and s with n using two coding formats, namely,
the ASCII and the adaptive coding formats. The compres-
sion ratios achieved for three text files of various sizes from
the Calgary corpus (bib, book1, and paper2), are given.
The results are shown in Table 4.



H. Al-Bahadili / A Bit-level Text Compression Scheme Based on the ACW Algorithm 127

Table 4 Variation of C and s with n using two coding formats for the ACW(n, s) scheme

n

bib book1 paper2

ASCII coding Adaptive coding ASCII coding Adaptive coding ASCII coding Adaptive coding

s C s C s C s C s C s C

9 176 1.262 82 1.275 1056 1.266 237 1.281 113 1.265 28 1.280

10 214 1.394 140 1.406 1352 1.397 600 1.414 144 1.397 68 1.413

11 223 1.523 174 1.537 1447 1.531 865 1.547 155 1.530 95 1.546

12 220 0.813 190 0.930 1448 0.898 1033 1.164 155 0.846 113 1.092

13 211 0.701 194 0.813 1412 0.792 1135 1.064 151 0.745 123 0.997

14 111 1.470 111 1.477 552 1.647 552 1.674 54 1.637 54 1.641

15 191 0.545 185 0.632 1296 0.634 1185 0.853 138 0.599 127 0.784

16 181 0.499 178 0.570 1233 0.573 1162 0.763 132 0.544 124 0.701

The results shows that: 1) a compression of over 50%
can be achieved, 2) the maximum compression is achieved
at n 614 depending on the size and the contents of
the source file, and 3) the adaptive coding yields higher
compression ratios than the ASCII coding for all values
of n.

Experiment 2. This experiment investigates the effect
of the character coding formats, namely, the ASCII coding,
Huffman coding, and the adaptive coding, on the compres-
sion ratio achieved by the ACW(n,s) scheme. The results
are listed in Table 5. The results reveal that the compres-
sion ratio achieved using adaptive coding is higher than
when using ASCII coding by a very small margin (around
2%). However, the ratio achieved using adaptive coding
is smaller than that using Huffman coding. This is be-
cause Huffman coding itself is a compression algorithm,
which means two compression techniques (Huffman cod-
ing and ACW(n, s)) are sequentially applied on the text.
First, the text is compressed during the coding process us-
ing Huffman coding. Second, the resultant binary sequence
is compressed using the ACW(n, s) scheme. So, the resul-
tant compression ratio is the product of the compression
ratios of Huffman and the ACW(n,s) scheme.

Table 5 shows that the optimum character wordlength
for the ASCII and the adaptive coding are either 11 or 14
depending on the context and size of the text file. However,

it is difficult to make early prediction to the optimum value,
but still it can be easily recognized that the optimum value
can be reached after a small number of iteration. On the
other hand, the compression ratio for Huffman coding is
followed by the ACW(n, s) for all examined text files, and
it is achieved when n = 11.

Table 6 lists the compression ratios achieved by Huffman
coding[21,22], the ACW(n, s) scheme, and the total com-
pression ratio achieved by cascading the two techniques.
It shows that the new scheme achieves almost a fix com-
pression ratio advantage of about 1.5 over Huffman coding,
which is less than what is achieved over adaptive coding.
For example, for the bib text file, the compression ratios
achieved by the ACW(n,s) scheme using the ASCII, Huff-
man, and the adaptive coding formats are 1.528, 1.525, and
1.537, respectively.

Experiment 3. This experiment investigates the
scheme compression efficiency (En). Text files are usually
coded using 7-bit character wordlength; therefore, using n-
bit character wordlength should provide a compression ra-
tio of n/7. For example, for 14-bit character wordlength,
we should ideally achieve a compression ratio of 2 simply
by replacing each 14-bit with its equivalent character. The
compression ratio obtained through dividing the character
wordlength by 7 is referred to as the ideal compression ratio
and it is denoted by Cideal.

Table 5 Comparison of C achieved by the ACW(n, s) scheme using different coding formats

Corpus Filename Size (byte)
ASCII/ACW(n, s) Huffman/ACW(n, s) Adaptive/ACW(n, s)

C n C n C n

bib 111261 1.528 11 2.330 11 1.537 11

book1 768771 1.647 14 2.673 11 1.674 14

book2 610856 1.531 14 2.530 11 1.545 11

paper1 53161 1.529 11 2.431 11 1.542 11

Calgary
paper2 82199 1.637 14 2.630 11 1.641 14

paper3 46526 1.611 14 2.595 11 1.616 14

paper4 13286 1.615 14 2.567 11 1.616 14

paper5 11954 1.526 11 2.432 11 1.539 11

paper6 38105 1.549 14 2.416 11 1.551 14

alice29.txt 152089 1.650 14 2.643 11 1.656 14

Canterbury
asyoulik.txt 125179 1.646 14 2.516 11 1.648 14

lcet10.txt 426754 1.592 14 2.599 11 1.604 14

plrabn12.txt 481861 1.743 14 2.667 11 1.750 14

Large
bible.txt 4047392 1.841 14 2.783 11 1.842 14

world192.txt 2473400 1.537 14 2.420 11 1.549 14



128 International Journal of Automation and Computing 7(1), February 2010

Table 6 Comparison of C for Huffman coding, ACW(n, s) scheme, and a combination of these two techniques

Corpus Filename Size (byte) Huffman coding
ACW(n, s) scheme Huffman/ACW(n, s)

C n C n

bib 111261 1.529 1.524 11 2.330 11

book1 768771 1.754 1.524 11 2.673 11

book2 610856 1.659 1.525 11 2.530 11

paper1 53161 1.595 1.524 11 2.431 11

Calgary paper2 82199 1.726 1.524 11 2.630 11

paper3 46526 1.705 1.522 11 2.595 11

paper4 13286 1.690 1.519 11 2.567 11

paper5 11954 1.601 1.519 11 2.432 11

paper6 38105 1.586 1.524 11 2.416 11

alice29.txt 152089 1.734 1.524 11 2.643 11

Canterbury
asyoulik.txt 125179 1.651 1.524 11 2.516 11

lcet10.txt 426754 1.703 1.526 11 2.599 11

plrabn12.txt 481861 1.749 1.525 11 2.667 11

Large
bible.txt 4047392 1.824 1.526 11 2.783 11

world192.txt 2473400 1.587 1.525 11 2.420 11

It is possible to evaluate the efficiency of the new scheme
by comparing the actual and the ideal compression ratios.
Thus, a new parameter is defined, namely, the scheme effi-
ciency (En), which is a function of n. It is calculated as the
ratio between the actual and the ideal compression ratios
at a particular character wordlength (n).

The efficiencies of the ACW(n,s) scheme are given in
Table 7. The results demonstrate that although a higher
compression ratio is achieved using a bigger character
wordlength, at the same time the scheme efficiency is
less. For example, En is around 97% for 11-bit character
wordlength and nearly 80% for 14-bit character wordlength.
The adaptive coding achieves higher efficiencies than both
ASCII and Huffman coding formats.

Experiment 4. In this experiment, the compression
ratio achieved by the ACW(n,s) scheme is compared with
other data compression algorithms, such as Huffman cod-
ing (HU), fixed-length Hamming (FLH), Huffman followed
by fixed-length Hamming (HF), and the HCDC(k) scheme.
The results for the ACW(n, s) scheme, which are based on

Huffman and adaptive coding formats, are presented in Ta-
ble 8 for two text files from the Calgary corpus, namely,
book1 and paper1. Results for HU, FLH, and HF are from
[17], and results for the HCDC(k) scheme are from [6].

It is clear that Huffman coding followed by the ACW(n,s)
scheme gives the highest compression ratio for both files,
and it is higher than Huffman coding followed by fixed-
length Hamming algorithm. However, the compression ra-
tio based on adaptive coding provides nearly the same per-
formance as the other algorithms.

Table 9 compares the compression ratio of the new
ACW(n,s) scheme with a number of adaptive schemes as
follows: the Unix compact utility based on adaptive Huff-
man (AH), the greedy adaptive Fano coding (AF)[23], and
the HCDC(k) scheme[6]. The compression ratio of the
ACW(n,s) scheme based on Huffman coding is higher than
all of other schemes for all text files examined. However,
using the adaptive coding provides a compression ratio that
is very close to the three algorithms with which it is com-
pared.

Table 7 Comparison of C and En of ACW(n,s) scheme for different coding formats

Corpus Filename
ASCII/ACW(n,s) Huffman/ACW(n,s) Adaptive/ACW(n,s)

C (n) En C (n) En C (n) En

bib 1.528 (11) 97.2 1.524 (11) 97.0 1.537 (11) 97.8

book1 1.647 (14) 82.4 1.524 (11) 97.0 1.674 (14) 83.7

book2 1.531 (11) 97.4 1.525 (11) 97.1 1.545 (11) 98.3

paper1 1.529 (11) 97.3 1.524 (11) 97.0 1.542 (11) 98.1

Calgary paper2 1.637 (14) 91.9 1.524 (11) 97.0 1.641 (14) 82.1

paper3 1.611 (14) 80.5 1.522 (11) 96.9 1.616 (14) 80.8

paper4 1.615 (14) 80.8 1.519 (11) 96.7 1.616 (14) 80.8

paper5 1.526 (11) 97.1 1.519 (11) 96.7 1.539 (11) 97.9

paper6 1.549 (14) 77.5 1.524 (11) 97.0 1.551 (14) 77.6

alice29.txt 1.650 (14) 82.5 1.524 (11) 97.0 1.656 (14) 82.8

Canterbury
asyoulik.txt 1.646 (14) 82.3 1.524 (11) 97.0 1.648 (14) 82.4

lcet10.txt 1.592 (14) 79.6 1.526 (11) 97.1 1.604 (14) 80.2

plrabn12.txt 1.743 (14) 87.2 1.525 (11) 97.1 1.750 (14) 87.5



H. Al-Bahadili / A Bit-level Text Compression Scheme Based on the ACW Algorithm 129

Experiment 5. In this experiment, the performance of
the ACW(n, s) scheme in terms of coding rate (Cr) in bit-
per-character (bpc) is compared with a number of widely
used programs and state-of-the-art software[6,18,24]. The

results are tabulated in Table 10. The coding rate of the
new scheme is found to be competing with many standard
softwares, and it is better if the ACW(n, s) uses Huffman
coding in converting text into binary sequence.

Table 8 Comparison of C of the ACW(n, s) scheme with various compression algorithms

Algorithm book1 paper1

Huffman coding (HU) 1.724 1.595

Fixed-length Hamming (FLH) 1.143 1.143

HU following FLH (HF) 1.707 1.565

HCDC(k) 2.543 (6)∗ 1.895 (4)∗

Adaptive/ACW(n,s) 1.674 (14)+ 1.542 (11)+

Huffman/ACW(n,s) 2.673 (11)+ 2.431 (11)+

∗ Represents k, which is the number of repetition loops. + Represents n, which is the adaptive character wordlength.

Table 9 Comparison of C of ACW(n,s) scheme and various adaptive compression algorithms

Corpus Filename AH[23] AF[23] HCDC(k) scheme[6]
ACW(n,s) scheme

Adaptive Huffman

bib 1.526 1.524 1.632 (4) 1.537 (11) 2.330 (11)

Calgary
book1 1.753 1.750 2.543 (6) 1.674 (14) 2.673 (11)

book2 1.658 1.653 2.253 (5) 1.545 (11) 2.530 (11)

paper1 1.587 1.588 1.895 (4) 1.542 (11) 2.431 (11)

alice29.txt 1.753 1.746 2.397 (5) 1.656 (14) 2.643 (11)

Canterbury
asyoulik.txt 1.648 1.645 2.086 (5) 1.648 (14) 2.516 (11)

lcet10.txt 1.718 1.717 2.296 (5) 1.604 (14) 2.599 (11)

plrabn12.txt 1.769 1.766 2.554 (6) 1.750 (14) 2.667 (11)

Table 10 Comparison of the Cr of the ACW(n, s) with various standard programs and state-of-the-art software

Programs Type Version
Filename

bib book1 book2 paper1 paper2 alice29

compress LZ 4.0 3.350 3.460 3.280 3.770 3.520 -

gzip LZ 1.2.3 2.520 3.260 2.710 2.800 2.900 -

comp-2-o-4 PPM Trial V. 2.020 2.350 2.080 2.480 2.450 -

DD - Trail V. 2.530 2.690 2.390 3.080 2.850 -

compress LZ 4.3d - 3.486 - - - 3.270

pkzip LZ 2.04e - 3.288 - - - 2.884

gzip-9 LZ 1.2.4 - 3.250 - - - 2.848

szip-b41-o0 BWT 1.05Xf - 2.345 - - - 2.239

ha a2 PPM 0.98 - 2.453 - - - 2.171

boa-m15 PPM 0.58b - 2.204 - - - 2.061

rkive-mt3 PPM 1.91b1 - 2.120 - - - 2.055

neural small NN P5 - 2.508 - - - 2.301

neural large NN P6 - 2.283 - - - 2.129

HCDC(k) Bit-level Trial V. 4.289(4)∗ 2.753(6)∗ 3.107(5)∗ 3.694(4)∗ 2.809(6)∗ 2.920(5)∗

ACW(n,s) (adaptive) Bit-level Trial V. 4.554(11)+ 4.182(14)+ 4.531(11)+ 4.540(11)+ 4.266(14)+ 4.227(14)+

ACW(n,s) (Huffman) Bit-level Trial V. 3.004(11)+ 2.619(11)+ 2.767(11)+ 2.880(11)+ 2.662(11)+ 2.649(11)+

∗ Represents k, which is the number of the repetition loops. + Represents n, which is the adaptive character wordlength.



130 International Journal of Automation and Computing 7(1), February 2010

6 Conclusions

The main conclusions of this work can be summarized as
follows:

1) The new scheme prevails is superior to all other
schemes that degrade the performance of the ACW(n)
algorithm.

2) The new scheme has an excellent, comparable, and
competitive performance and outperforms the widely
used data compression algorithms and state-of-the-art
compression tools of different models.

3) The compression ratio depends on i) the adaptive char-
acter wordlength used and the number of subsequences
into which the binary sequence is subdivided, ii) the
size of the source file, and the frequencies and distribu-
tion of characters within the file, and iii) text-to-binary
coding format that is used to convert a text file into a
binary sequence.

4) The maximum compression ratio is always achieved
when n varies between 9 and 14 bits. This of course
eliminates the needs of finding the optimum n by
lengthy search. In worst case, the search for optimum
n is to be performed over a small range, for example,
from 9 to 16.

5) The three coding formats we investigated (ASCII,
Huffman, and adaptive coding) reveal that the highest
compression ratio achieved is for Huffman coding since
it performs coding and compression at the same time.

6) The new scheme can be used as a complementary
scheme to any statistical lossless compression algo-
rithm, such as Shanon-Fano coding, static or adaptive
Huffman coding, arithmetic coding, the combination
of these algorithms, or any modified form of them.

7) The results on En demonstrated an efficiency of
around 97% using 11-bit character wordlength and
around 80% using 14-bit character wordlength.

Our future work will focus on the performance of this
scheme in compressing multimedia files, and compari-
son of the compression/decompression processing time
with other compression algorithms and state-of-the-art
compression tools.

References

[1] J. Lánský, M. Žemlička. Text compression: Syllables. In

Proceedings of the Dateso Workshop on Databases, Texts,

Specifications and Objects, pp. 32–45, 2005.

[2] A. Mofat, R. Y. K. Isal. Word-based text compression us-

ing the burrows-wheeler transform. Information Processing

and Management, vol. 41, no. 5, pp. 1175–1192, 2005.

[3] J. Adiego, P. de la Feunte. On the use of words as source

alphabet symbols in PPM. In Proceedings of Data Com-

pression Conference, IEEE, pp. 435, 2006.

[4] J. Dvorsky, J. Pokorny, V. Snasel. Word-based compression

methods for large text documents. In Proceedings of Data

Compression Conference, IEEE, pp. 523, 1999.

[5] J. Lánský, M. Žemlička. Compression of a dictionary. In

Proceedings of DATESO Workshop on Databases, Texts,

Specifications and Objects, pp. 11–20, 2006.

[6] H. Al-Bahadili, A. Rababa′a. An adaptive bit-level text

compression scheme based on the HCDC algorithm. In Pro-

ceedings of Mosharaka International Conference on Com-

munications, Networking and Information Technology, Am-

man, Jordan, pp. 51–56, 2007.

[7] H. Al-Bahadili, S. M. Hussain. An adaptive character

wordlength algorithm for data compression. Computers &

Mathematics with Applications, vol. 55, no. 6, pp. 1250–

1256, 2008.

[8] Y. Weng, J. Jiang. Real-time and automatic close-up re-

trieval from compressed videos. International Journal of

Automation and Computing, vol. 5, no. 2, pp. 198–201,

2008.

[9] L. Zhu, G. Y. Wang, C. Wang. Formal photograph com-

pression algorithm based on object segmentation. Interna-

tional Journal of Automation and Computing, vol. 5, no. 3,

pp. 276–283, 2008.

[10] K. Saydood. Introduction to Data Compression, 3rd ed.,

Morgan Kaufmann, 2006.

[11] Y. Ye, P. Cosman. Dictionary design for text image com-

pression with JBIG2. IEEE Transactions on Image Process-

ing, vol. 10, no. 6, pp. 818–828, 2001.

[12] I. H. Witten, A. Moffat, T. C. Bell. Managing gigabytes:

Compressing and indexing documents and images. IEEE

Transactions on Information Theory, vol. 41, no. 6, Part 2,

pp. 2101–2102, 1995.

[13] T. C. Bell, J. G. Cleary, I. H. Witten. Text Compression,

NJ, USA: Prentice-Hall, 1990.

[14] H. Al-Bahadili. A novel lossless data compression scheme

based on the error correcting Hamming codes. Computers

& Mathematics with Applications, vol. 56, no. 1, pp. 143–

150, 2008.

[15] S. Nofal. Bit-level text compression. In Proceedings of the

1st International Conference on Digital Communications

and Computer Applications, Irbid, Jordan, pp. 486–488,

2007.

[16] G. Caire, S. Shamai, S. Verdu. Noiseless data compression

with low density parity check codes. Advances in Network

Information Theory, DIMACS Series in Discrete Mathe-

matics and Theoretical Computer Science, P. Gupta, G.

Kramer, A. J. van Wijngaarden, Ed., vol. 66, pp. 263–284,

2004.



H. Al-Bahadili / A Bit-level Text Compression Scheme Based on the ACW Algorithm 131

[17] A. A. Sharieh. An enhancement of Huffman coding for the

compression of multimedia files. Transactions of Engineer-

ing Computing and Technology, vol. 3, no. 1, pp. 303–305,

2004.

[18] M. V. Mahoney. Fast text compression with neural net-

works. In Proceedings of the 13th International Florida Ar-

tificial Intelligence Research Society Conference, pp. 230–

234, 2000.

[19] A. Rababa′a. An Adaptive Bit-Level Text Compression

Scheme Based on the HCDC Algorithm, M. Sc. disserta-

tion, Amman Arab University for Graduate Studies, Am-

man, Jordan, 2008.

[20] R. Arnold, T. Bell. A corpus for the evaluation of lossless

compression algorithms. In Proceedings of the Conference

on Data Compression, IEEE, pp. 201–210, 1997.

[21] J. S. Vitter. Dynamic Huffman codes. Journal of the ACM,

vol. 34, no. 4, pp. 158–167, 1989.

[22] J. S. Vitter. Design and analysis of dynamic Huffman cod-

ing. Journal of the ACM, vol. 34, no. 4, pp. 825–845, 1987.

[23] L. Rueda, B. J. Oommen. A fast and efficient nearly-optimal

adaptive Fano coding scheme. Information Science, vol. 176,

no. 12, pp. 1656–1683, 2006.

[24] H. Plantinga. An asymmetric, semi-adaptive text compres-

sion algorithm. In Proceedings of IEEE Data Compression

Conference, 1994.

Hussein Al-Bahadili received the B. Sc.

degree in engineering from University of

Baghdad, Iraq in 1986, and the M.Sc. and

Ph.D. degrees in engineering from Univer-

sity of London, UK in 1988 and 1991, re-

spectively. He is currently an associate pro-

fessor at the Arab Academy for Banking

and Financial Sciences (AABFS). He is a

visiting researcher at the Wireless Networks and Communica-

tions Centre (WNCC) at University of Brunel, UK. He is also a

visiting researcher at the Centre of Osmosis Research and Appli-

cations (CORA), University of Surrey, UK.

His research interests include parallel and distributed comput-

ing, wireless communications, computer networks, cryptography

and network security, data compression, image processing, and

artificial intelligence and expert systems.

E-mail: hbahadili@aabfs.org (Corresponding author)

Shakir M. Hussain received the B.A.

degree in statistics from University of Al-

Mustansiriyah, Iraq in 1976 and M. Sc. de-

gree in computing and information science

from Oklahoma State University, USA in

1984. In 1997, he received the Ph.D. de-

gree in computer science from University of

Technology, Iraq. From 1997 to 2008, he

was a faculty member at Applied Science University, Jordan.

Currently, he is the head of Computer Science Department at

Petra University, Jordan. He is a member of ACM.

His research interests include block cipher, key generation, au-

thentication, and data compression.

E-mail: shussein@uop.edu.jo


