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Abstract: This paper presents discrete wavelet transform (DWT) and its inverse (IDWT) with Haar wavelets as tools to compute
the variable size interpolated versions of an image at optimum computational load. As a human observer moves closer to or farther
from a scene, the retinal image of the scene zooms in or out, respectively. This zooming in or out can be modeled using variable
scale interpolation. The paper proposes a novel way of applying DWT and IDWT in a piecewise manner by non-uniform down- or
up-sampling of the images to achieve partially sampled versions of the images. The partially sampled versions are then aggregated to
achieve the final variable scale interpolated images. The non-uniform down- or up-sampling here is a function of the required scale of
interpolation. Appropriate zero padding is used to make the images suitable for the required non-uniform sampling and the subsequent
interpolation to the required scale. The concept of zeroeth level DWT is introduced here, which works as the basis for interpolating
the images to achieve bigger size than the original one. The main emphasis here is on the computation of variable size images at less
computational load, without compromise of quality of images. The interpolated images to different sizes and the reconstructed images
are benchmarked using the statistical parameters and visual comparison. It has been found that the proposed approach performs better
as compared to bilinear and bicubic interpolation techniques.
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1 Introduction

When a human being observes any scene from a specific
distance, a retinal image of that scene is generated on the
retina of the observer. The retinal (at inner curved surface
of human eyeball rear side) resolution is higher at the centre
of the retinal plane within around a 6◦ solid angle. How-
ever, the resolution is less in the peripheral regions[1]. This
resolution depends on the eye (left or right), person, condi-
tion of the eye, illumination over the scene, wavelength of
illumination, and many other factors. As far as this work is
concerned, we consider the available original image as the
retinal map obtained at the first instance by observing the
scene.

However, the other parameters like illumination condi-
tions, condition of the eye[2, 3] are neglected for simplicity,
and of course, resolution is the current resolution of the im-
age. As the observer moves towards the scene, the retinal
image gets enhanced, and more details of the scene can be
observed. On the other hand, if he/she moves away from
the scene, the details are lost. Thus, to simulate movement
towards the scene, the original image size needs to be in-
creased, i.e., a bigger sized interpolated version of the scene
needs to be computed. If the observer moves away from
the scene, a lower resolution interpolated image needs to be
computed. This paper presents such interpolations using
Haar discrete wavelet transform. If the actual size of the
object and distance from the observer are known, different
interpolated versions for the changing distance between the
human eye and the observer can be precisely computed.
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A lot of work has already been done for interpolating the
images using discrete wavelet transform. It was targeted at
edges and texture enhancements such that after interpola-
tion the smoothness of the visual images was maintained
for photographic and printing purposes[4−13]. Compara-
tively, less emphasis was given on interpolation for the im-
ages of required size. Most of the algorithms were computa-
tionally heavy[6, 9, 10]. However, we could not come across
any interpolation technique using discrete wavelet trans-
form (DWT) which can predict the required image resizing
factor in terms of DWT level, as proposed in this work.

During the last ten years, various interpolation tech-
niques have been developed. Some of these techniques are
wavelet-based interpolation techniques. Edge and texture
enhancement scheme was presented in [4] using DWT in
which images were handled as complete matrices and not
piecewise and interpolation techniques were used to inter-
polate the edge pixels. Wavelet-based contour estimation
in [5], which is again an edge enhancement approach, gave
size variation only in multiple of power of 2. Wavelet fractal
interpolation technique in [6] was a computationally com-
plex method. For wavelet-based image interpolation using
phase shift compensation, parametric modeling of proba-
bilistic wavelet coefficients was required in [7].

Nonlinear models usually result in increased computa-
tional complexity. Interpolation using image resampling
approach with neural network training and conversion was
presented in [9], which is again a computationally complex
method. Interpolation using wavelet-based hidden Markov
trees results in image detail estimation[10]. For denois-
ing applications, the hidden Markov model is useful, but
for interpolation, the shortcoming is its inherent inability to
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keep track of the sign of coefficients. Sampling and inter-
polation in [11] resulted in wavelet coefficients up to n− 1,
but coefficients at finer scale could not be computed. A
thesis titled “mathematical techniques for image interpo-
lation” presented edge-based correlation across sub-bands
and gave out locally linear embedded (LLE) algorithm in
which only zooming in technique was elaborated[12]. Some
dynamically configurable vision and tracking systems were
presented in [14, 15].

In this paper, we propose a simple algorithm for DWT-
based variable-scale image interpolation. Conventional dis-
crete wavelet transformation reduces the image size by a
factor of 2n, n being an integer, whereas in this paper,
it is proposed that image can be reduced to any (variable
scale) size, using discrete wavelet transformation. Section 1
presents the outline of the paper and literature survey. Sec-
tion 2 describes short outline of wavelet decomposition and
reconstruction. In Section 3, similarity between human vi-
sion and DWT is discussed. Section 4 describes modifica-
tion required to convert conventional DWT into (variable
scale) piecewise DWT, followed by the same for inverse dis-
crete wavelet transform (IDWT). The zeroeth level DWT
concept is proposed in Section 5. Fractional level DWT
concept is presented in Section 6. Comparison of the pro-
posed method with other interpolation methods like bilinear
and bicubic is presented in Section 7. Various parameters
used to analyze the results are discussed in brief in Section
8 for variable scale interpolation. Conclusions is drawn in
Section 9.

2 Discrete wavelet transform

DWT is a technique of decomposition of a complex signal
in terms of its mother wavelet and is similar to the expan-
sion of a function in the form of a series. The more the
number of terms considered, the higher the accuracy. An
image is a two-dimensional signal or a two-variable function.
Hence, the series expansion is also two-dimensional.

The wavelet expansion at first level results in four images
that provide sub-band information content of the image and
are generated by appropriate sub-sampling and convolution
with appropriate filter masks. The first level wavelet trans-
formation gives four images, and they are low-pass followed
by low-pass (LPLP-approximate details), low-pass followed
by high-pass (LPHP-horizontal details), high-pass followed
by low-pass (HPLP-vertical details), and high-pass followed
by high-pass (HPHP-diagonal details)[16]. Hence, here the
original image is reduced to a size equal to original size/4.
Here, the number of rows and columns are reduced to half
after the first level DWT application. Applying IDWT
to the four DWT components yields the original image.
For perfect reconstruction of an original image from these
components, the filters must be perfectly reconstructable
filters[17].

The finite resolution of digital machine and the approx-
imations during computations result in reconstruction er-
ror. However, in general DWT is expected to retrieve more
than 98% energy of the original signal after reconstruction.
Fig. 1 shows its schematic for wavelet implementation. The
LPLP image is observed to be visibly similar to the original
image but 50% in dimension (resolution). Thus, it can be

considered as a 50 % interpolated image.

Fig. 1 Computation of DWT

3 Human vision and DWT

The proposed work plans to explore the relationship be-
tween the wavelet transform expansions of images and the
analogous vision phenomenon. In most of the computer vi-
sion and image processing algorithms, it has been observed
that even for executing simplest algorithms, the computing
machines take a lot of time[18] and do not complete the task
in real time. For example, to segment a given color image,
even the fastest available machine may take much more time
than that taken by a human being. Modern microprocessors
have very high computational ability; they are suitable for
completing repetitive tasks much faster than human brain.

However, the human brain is found to be faster than the
computers for image processing and vision applications. It
is possibly due to the massively parallel architecture of the
human brain. This clearly indicates that the way of han-
dling the vision data over the computing machines still re-
quires a lot of research, and thus, the image processing and
computer vision algorithms attract a sizable chunk of re-
search efforts in this area. As pointed out earlier, the fact
that computer vision and image processing algorithms take
a lot of time for execution on high-speed machines as com-
pared to human beings also further indicates the need of
exploring the human visual system and orienting the com-
putational algorithms according to the limitations and ca-
pabilities of human vision.

One example that can be cited here is an image directly
taken from the camera. It may result in arbitrary number
of segments as compared to a properly filtered and sampled
image. As already stated above, the discrete wavelet trans-
form refers to the multi-band decomposition of the given
image. When a human being observes a particular scene, it
also tends to remember the content of the scene or image
in terms of four components. These components may be
broadly described as low frequency components (segments
in the image), i.e., LPLP, that are intermediate compo-
nents in the image, and LPHP, HPLP, and HPHP compo-
nents that represent high-frequency component (edges) in
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the image.
Also, DWT can retrieve up to 98% energy of original

signal, and up to 2 % change in energy is not noticed by hu-
man eyes[19]. This fact roughly establishes similarity in the
DWT and functioning of human vision. Another example
that can be quoted is that, as the level of discrete wavelet
transform goes on increasing, the LPLP result image ap-
pears to be the original image but viewed from a longer
distance. This points to the fact that an object viewed from
a longer distance appears to be smaller with fewer details,
while the same object viewed from the smaller distance ap-
pears to be bigger with more detail, and this phenomenon
may be modeled by appropriate level DWT.

4 Piecewise application of DWT

To model the movement of the observer, closer to and
farther from the scene, initially, appropriate zero padding
is done, followed by non-uniform sub-sampling and filtering,
and then, DWT is applied in a piecewise manner. Finally,
all the pieces of the DWT transformed signal are added to
achieve the interpolated signal, which is described in Figs. 2
and 3.

Fig. 2 Dependency of retinal/object size on movement of ob-

server

Fig. 3 Piecewise DWT processing on fN (t) to obtain fM (t). (a)

Given one dimensional signal fN (t) for duration t; (b) fN (t) sig-

nal broken into pieces to obtain fN (τ); (c) Piecewise processing

of fM (τ) to obtain fM (t)

Fig. 2 shows that as the observer moves closer, the ob-
served object size and retinal image size effectively increase,
and if he moves farther from the object, the observed ob-
ject size and the retinal image size effectively decrease. To

model this, the available image is increased or decreased
in its size and required interpolation is carried out. The
DWT is applied in piecewise fashion to achieve this inter-
polation, as described below. As usual, DWT gives out
50 %, 25%, and 12.5 % interpolation of the signal for the the
first-, second-, and third- level DWT decomposition, but to
achieve say 66%, 75%, or 33 % (or any odd scale) reduction
using DWT, the proposed piecewise application of DWT is
required. Similarly, 125%, 150%, or 200 % (or any odd
scale) magnification using DWT can also be achieved using
piecewise application of DWT. For that, the zeroeth level,
−1st level, −2nd level, and −n-th level DWT are presented
further.

Algorithm for variable-scale interpolation.
Let fN (t) be a band limited signal with N samples.

fN (t) is to be interpolated to a smaller size with M sam-
ples fM (t). Obviously, M < N , or the resulting signal
fM (t) will be having (N − M) less samples than fN (t).
These (N − M) samples will be dropped from fN (t) uni-
formly all over fN (t) such that no two or more neighbour-
ing samples are dropped due to down-sampling, i.e., only
one sample can be dropped in each specified window. This
is possible only if N/n = N − M , where n is the nonzero
positive smallest integer satisfying the above equality. If
N/n 6= N −M , then N is incremented by zero padding to
N ′ so that N ′/n = N −M . Let the number of samples of
fN (t), N = 100, and the required interpolated signal sam-
ples of fM (t), M = 67, i.e., a 33 % reduction. Therefore, the
number of samples to be dropped is N−M = 100−67 = 33.
Now, N/n = 100/3 = 33.333. Thus, N−M 6= N/n. Hence,
zero padding is needed. The number of samples to be zero
padded can be computed as N ′ = N + z = 100 + 2 = 102.
Now, N ′/n = 102/3 = 34 ≈ 33.

Other alternative is to drop the last |(N/n)| samples, i.e.,
in the above case, last |(N/n)| = 1 sample will be dropped.
However, it is to be noted that such dropping of samples
results in loss of information corresponding to the dropped
columns. Hence, the earlier technique is preferred. Now,
the signal fN (t) is windowed using a train of pulses as fol-
lows: ∑

up(n′)|n′=1:n
p=1:(N−M) = 1. (1)

The resulting signal can be expressed as

fN (τ) = fN (t)
∑

up(n′) |n′=1:n
p=1:(N−M) =

∑
fN (t)up(n′) |n′=1:n

p=1:(N−M) . (2)

Therefore, if DWT stands for piecewise DWT, we have

DWT(fN (τ)) = DWT(
∑

fN (t)up(n′) |n′=1:n
p=1:(N−M)). (3)

As DWT is an associative transform, (3) is bound to be
valid.

DWT[fN (t)up(n′) |n=1:n
p=1:(N−M)] = DWT[fp(n′)]. (4)

where fp(n′) = fN (t)up(n′) |n′=1:n.
DWT of fp(n′) can now be computed in a piecewise man-

ner as shown below. The low pass filter is applied. This
signal is divided into pieces of n samples each. Then, out
of every n samples, one sample n′ = 1 : n is dropped at
a time, and we get fp(n′ − 1). Thus, for each n′ sam-
ple interval by changing n′ to 1 : n, we get n samples of
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fpn′(n − 1). By adding all fpn′(n − 1), we get fp(n − 1)
for each p = 1 : N −M . This is the proposed non-uniform
down-sampling. Thus, for all p, total (N − M) = p sam-
ples will be dropped, reducing the size of fN (t) to fM (t).
Thus, all fp(n−1) will be added to obtain fM (t), i.e., coarse
portion of DWT (LPLP), as shown in Fig. 4.

A high pass filter applied in the same manner yields the
details. In case of images, this algorithm will be first ap-
plied row-wise and then column-wise. The above algorithm
actually interpolated the size of the available image to the
required smaller size in the form of coarse part of the DWT
of fN (t). While the remaining three parts are also com-
puted using similar down-sampling over n′ = 1 : n for all p
and then adding all the resulting M size vectors to obtain
fM (t) in both directions. The four parts of DWT can be
used for reconstruction.

For increasing the given size of fN (t) to fM (t), where
M > N , zero padding is done to increase N to N ′ so that
z samples are inserted at the end of fN (t) to make N ′ in-
tegral multiple of p = (M − N ′). Let n = N ′/(M − N),
and further, fN′(t) is inserted with zero samples uniformly
such that in each n samples one zero sample is inserted.
This is the proposed non-uniform up-sampling followed by
LP and HP filter application as in IDWT to obtain a vector
fp(n + 1) for all p = 1 : (M − N) and for all n′ = 1 : n.
fM (t) is obtained on summation of all fp(n′) as

fM (t) =

p=(M−N)∑
p=1

fp(n′). (5)

This is the piecewise application of DWT algorithm.
For application to images, the same procedure is applied

row wise and then column wise as in Fig. 5. Thus, piecewise
application of DWT with appropriate zero padding yields
reduction to the required size, while piecewise application of
IDWT with appropriate zero padding yields increase to the
required size. The interpolations for M < N and M > N
are carried out followed by the reconstructions. The mean
squared error (MSE), peak signal to noise ratio (PSNR),
and qualitative statistical measures based on human visual
information are presented along with the result images in
the result section.

5 Zeroeth level DWT

In conventional DWT, the 1st level, 2nd level, and 3rd
level image decompositions and the corresponding LPLP
components resize the image to 50 %, 25%, and 12.5% of
the original image size. Thus, the conventional DWT will
provide only reduction of image size that takes place when
one moves away from the object/scene. For providing mag-
nification of the scene/image when one moves closer to the

Fig. 4 Schematic for piecewise application of DWT

Fig. 5 Schematic for piecewise application of IDWT
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object/scene, the conventional discrete wavelet transform
does not provide any technique. We have presented the ze-
roeth level DWT of an image to generate the four sub-band
images from the original image at the same scale, and it is
the first step to interpolate the image to the bigger sizes
than the original one. The zeroeth level DWT images are
presented in the result section, containing original image,
zeroeth level LPLP, LPHP, HPLP, and HPHP components.
Algorithm for the zeroeth level DWT is presented further.

Algorithm for zeroeth level DWT.
Let H be the low pass filter and G be the high pass fil-

ter. Then, the algorithm for the zeroeth level DWT can be
given in a stepwise manner as follows:

Step 1. Signal f(x, y) is convolved with the low pass
filter H row-wise to obtain low-pass (LP) version of that
signal f(x, y)LP.

Step 2. The obtained signal f(x, y)LP is once again con-
volved with the low pass filter column-wise to obtain low-
pass low-pass (LPLP) version of the image. Thus, (without
down-sampling as in conventional DWT) LPLP component
of the zeroeth level DWT is obtained and is denoted by
f(x, y)LPLP.

Step 3. The low pass version of the image f(x, y)LP is
convolved with high pass filter G to obtain low-pass high-
pass version (LPHP) of the image f(x, y)LPHP, which re-
lates to LPHP component of conventional DWT but ob-
tained here without down-sampling of the original signal.

Step 4. Similar procedure is adopted to obtain the ze-
roeth level HPLP and HPHP components of the image.

IDWT procedure can be successively applied to these four
components to obtain bigger size interpolated version of
the given image. Further continuing the application of the
IDWT, the −1st level, −2nd level, and −3rd level IDWT
can be computed. Thus, continued application of the ze-
roeth level DWT algorithm followed by IDWT can yield
magnification of the image size.

6 Fractional level DWT

Conventional DWT interpolates the image size by a fac-
tor 2n, where n is an integer. In other words, it reduces the
image size by the above said factor. To interpolate a given
image to any odd size other than 2n, where n > 0; obvi-
ously, fractional level DWT will be required. Therefore, to
increase the image size, the zeroeth level DWT is carried
out, as already explained in Section 5. Further, the −1st
level, −2nd level, −3rd level, etc., can be worked out to
achieve magnification of the image to 200%, 400 %, 800%,
and so on corresponding to the conventional DWT process-
ing. Again, to interpolate the size of the given image to
any odd size other than 2n, where n < 0, the fractional
level DWT will be required.

The fractional level DWT is implemented by applying
the conventional DWT in a piecewise manner to achieve
any odd scale (fractional level) DWT. The graph can be
plotted for level of DWT against decrease in size of the im-
age. Similarly, the zeroeth level DWT and further the −1st
level, −2nd level, and −3rd level DWT can yield magnifi-
cation of the image. These can further be plotted for level
of DWT against change in image size to yield the plot, as
shown in Fig. 6. For example, suppose if interpolation of

given image is required to size 67%, that is, there will be
a reduction of 33 %. The order of the DWT n is such that
0 < n < 1. The resulting image will be 67% of the original
image as already discussed. When n = 1, interpolation to
size 50% will be achieved using first level DWT. Suppose
the interpolation is expected to reduce the image to 33%,
the required order of DWT n > 1. Here, the resulting image
will be 33 % in size.

Fig. 6 Size variations against level of DWT

This can be achieved by splitting the percentage 67% =
50%+17%. Further, 50% reduction is achieved using DWT
(n = 1). The remaining 67% − 50% = 17% reduction can
now be thought of as 34% of the already 50% reduced im-
age using DWT (n = 1) and can be implemented further.
Similarly, 78% reduction can be achieved using DWT with
n = 2, yielding 75% reduction and resulting in 25% size of
the original image. The remaining 78− 75 = 3% reduction
can be thought of as 3×2n = 12% of the existing 25 % size.
Similarly, if 140% increase in size is required, then first the
zeroeth level DWT needs to be computed as already dis-
cussed, followed by DWT with n = −1 (IDWT), yielding
100 % rise in size. The remaining 40% rise can be consid-
ered as 20% of the resulting image and can subsequently
be computed. Thus, the fractional level DWT has been im-
plemented, and any odd size interpolation can be achieved.
It is to be noted here that the computational load for in-
terpolating the given image to a different scale also varies
depending upon the factor of reduction or magnification.

7 Comparison of various methods

As DWT interpolates the image size by a factor 2n where
n is an integer, it is considered here as a tool to interpo-
late the image to simulate interpolation like human vision.
Here, DWT based interpolation method is compared with
traditional bilinear and bicubic interpolation methods. The
1st level, 2nd level, and 3rd level DWT reduce the image to
50%, 25%, 12.5 %, and so on (accordingly the image area
reduces to 22, 24, and 26 times of the original image area).
Corresponding reduction in size is experimented with bi-
linear and bicubic interpolation methods and subsequent
reconstructions. In fact, we have experimented up to 10
levels of DWT.

However, the DWT results are presented here only up
to the 4th level. After the 6th level, the reconstruction er-
ror or MSE is found to increase gradually, and the image
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also starts degrading visibly. For this experimentation, the
values of MSE and PSNR are compared. In fact, several
interpolation experiments were carried out on a large num-
ber of images. All those images were magnified, as well as
reduced, and every time, the reconstruction error was com-
puted. However, the values of MSE for 50 %, 25%, 12.5 %,
and 6.25% reduction and the subsequent reconstruction er-
ror for bilinear, bicubic, and DWT interpolation methods
for some of them are presented in Table 1.

The values of MSE of DWT-based interpolation method
are found better as compared to bilinear and bicubic in-
terpolation in most of the cases. For the 1st level DWT
interpolation, the MSE values are found to be comparable
to the corresponding reduction in few cases of bicubic inter-
polation technique. For the 2nd level DWT interpolation,
the values of MSE obtained are better as compared to corre-
sponding results of bicubic interpolation. Thus, exhibiting
its best performance for 25% reduction in size, DWT is
found to be the best interpolation method when compared
with the other two.

Similarly, at the 3rd and 4th levels, i.e., for reductions
in size to 12.5 %, 6.25%, and so on, the DWT interpola-
tion method can be considered as the best interpolation
method. The above three methods of interpolation were
studied for six different tagged image file (TIF) format im-
ages, and corresponding MSE values are tabulated in Ta-
ble 1. Graphically, these three methods can be compared
for their corresponding values of MSE for various percent-
age reductions in size and are plotted here in Fig. 7 for the
cameraman image. As already said, after the 6th level of
DWT (image area reduction to 22n, i.e., 212 = 4k times the
original image), the reconstruction introduces considerable
error (MSE), and the images become somewhat visibly dis-
torted. After the 10th level of DWT (image area reduction
to 220= 1M times the original image size), the results are
visibly unacceptable. Fig. 8 shows the comparative perfor-
mances for 25% reduction in size for bilinear, bicubic, and
DWT based interpolations.

Fig. 7 MSE versus percentage reduction in size for bilinear,

bicubic, and DWT interpolations

Fig. 8 Comparative performances for 25% reduction in size for
bilinear, bicubic, and DWT-based interpolations

8 Results

To evaluate the performance of the interpolation scheme
quantitatively, PSNR and MSE have been calculated. The
MSE is defined as

MSE =
1

m× n

m∑
i=1

n∑
j=1

(xij − yij)
2 (6)

where m and n are the numbers of rows and columns, re-
spectively. xij and yij denote the original and reconstructed
signals, respectively, where i = 1 : m and j = 1 : n.

The PSNR is defined as

PSNR = 20 log10

255√
MSE

. (7)

The proposed interpolation method and other popular ex-
isting interpolation approaches are compared in this study.
Thus, we compared three interpolation methods: the 2-
dimensional bidirectional linear interpolation (denoted by
“bilinear”), the cubic interpolation (denoted by “bicubic”),
and the proposed piecewise DWT interpolation scheme in
the simulations. Table 2 shows the MSE and PSNR values
(dB) of the simulation results for the reconstructed still im-
ages. The images were shown to more than 100 observers,
and they were requested to discriminate between original
and reconstructed images. The percentage of matching by
the observers has been presented as picture reconstruction
quality by human observer on the same lines of picture
quality and structural similarity by human observers[20, 21].

Table 1 Comparison of bilinear, bicubic, and DWT interpolation MSE values for various TIF images

Image 50% reduction 25% reduction 12.5% reduction 6.25% reduction

Bilinear Bicubic DWT Bilinear Bicubic DWT Bilinear Bicubic DWT Bilinear Bicubic DWT

Cameraman 200 152 140 407 361 166 651 608 293 1017 1033 1000

Circuit 26 13 31 110 90 39 241 220 184 554 552 457

Pout 6 4 19 25 19 10 60 52 36 123 120 100

Airplane 66 52 102 147 132 177 228 222 74 319 318 250

Fishing boat 91 66 67 215 187 63 363 343 165 589 585 545

Pentagon 94 73 100 167 151 103 246 231 90 378 379 302
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Figs. 9 and 10 show the original size of airplane and pen-
tagon images along with their 66% interpolated size, re-
spectively. Fig. 11 shows various DWT components for
piecewise application of DWT for 66% interpolation of a
circuit image. Fig. 12 shows the four zeroeth level compo-
nents of the image. To construct the image of bigger size,
the four components will be subjected to the non uniform
up-sampling and the piecewise IDWT procedure after the
zeroeth level DWT.

Table 2 Various TIF images showing their MSE and PSNR

values for 66% interpolated size for bilinear, bicubic and Haar

DWT

Image MSE PSNR (dB)
Picture

quality

Bilinear Bicubic
Haar

Bilinear Bicubic
Haar Human

DWT DWT observers

Airplane 159 49 34 31 32 26 99%

Pentagon 233 150 117 26 27 24 100%

Pout 17 5 4 40 41 35 98%

Circuit 51 19 8 35 38 31 99%

Tank 113 170 648 25 20 27 98%

Boat 51 58 55 30 30 30 99%

Fig. 9 Original image of airplane, 66 % interpolated airplane,

and reconstructed image

Fig. 10 Original image of pentagon, 66 % interpolated pen-

tagon, and reconstructed image

Fig. 11 Circuit image showing DWT components (LPLP,

LPHP, HPLP, and HPHP) for 66% interpolation using piece-

wise application of DWT

Fig. 12 Circuit, zeroeth level DWT components of circuit and

reconstructed image

9 Conclusions

The DWT-based interpolation method is compared with
bilinear and bicubic interpolation methods. A scheme of
interpolation of images to varying sizes using piece-wise ap-
plication of DWT and IDWT has been presented along with
its quantitative results. The discrete Haar wavelet with two
elements has been found to yield results comparable to bi-
linear and bicubic interpolation techniques but at a much
less computational load. The important point is that no
visual distortion is observed in the reconstructed images.

Better MSEs and PSNRs can be achieved using higher
size wavelet approximations like Daubechies, but computa-
tional load may increase tremendously.

The concept of the zeroeth and −n-th level DWT has
been introduced, which leads to magnification of images us-
ing piece-wise inverse Haar discrete wavelet computations.
The comparable MSE, PSNR, and low visible distortion at a
less computational load makes this scheme more suitable for
vision applications. We have experimented up to 10 levels
of DWT. DWT results up to the 4th level, and its corre-
sponding comparison with other two methods are presented
in this paper. Gradual increase in MSE is found after recon-
struction from the 6th level DWT. The results are visibly
unacceptable after 10th level of DWT. The 10th level DWT
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results in 210 times reduction in each image dimension or
220 times reduction in the number of image pixels.
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