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Abstract: A new Runge-Kutta (PK) fourth order with four stages embedded method with error control is presented in this paper
for raster simulation in cellular neural network (CNN) environment. Through versatile algorithm, single layer/raster CNN array is
implemented by incorporating the proposed technique. Simulation results have been obtained, and comparison has also been carried
out to show the efficiency of the proposed numerical integration algorithm. The analytic expressions for local truncation error and
global truncation error are derived. It is seen that the RK-embedded root mean square outperforms the RK-embedded Heronian mean
and RK-embedded harmonic mean.
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1 Introduction

Cellular neural network (CNN) was first proposed by

Chua and Yang[1, 2] as an implementable alternative to

fully-connected neural networks. Furthermore, CNN[3] has

many important applications and has been widely stud-

ied for theoretical foundations and practical applications

in real-time image and video signal processing, robotic

and biological visions, and higher brain vision. Roska et

al.[4,5]have presented the first widely used simulation sys-

tem that allows the simulation of a large class of CNN

and is especially suited for image processing applications[6].

It also includes signal processing, pattern recognition, and

solving ordinary and partial differential equations, etc. Lee

and Gyvez[7] introduced Euler, improved Euler, predictor-

corrector, and fourth-order (quartic) Runge-Kutta (RK) al-

gorithms in raster CNN simulation. Using RK-Butcher′

fifth-order method, the edge detection problem has been

analyzed using raster CNN simulation[8]. To distinguish

faces of various angles during face recognition, an algorithm

of the combination of approximate dynamic programming

(ADP) called action dependent heuristic dynamic program-

ming (ADHDP), and particle swarm optimization (PSO) is

presented by Lu[9]. Xiao et al.[10] proposed a method for

moving shadow detection based on edge information, which

can effectively detect the cast shadow of a moving vehicle in

a traffic scene. A novel method of shape retrieval based on

shape impression of human′s Kansei have been developed

by Koda et al.[11]

It is of interest to state that embedded methods are ac-

tually two methods built into one. The first method is of

order p, and the second has order p + 1. The difference be-

tween these methods provides an error estimate for the first
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method with order p. Error estimates by these methods

have been derived by Merson[12] and Fehlberg[13]. Evans

and Yaakub[14] introduced a new embedded Runge-Kutta

RK (4,4) method that is actually two different RK methods

but of the same order p = 4. Yaacob and Sanugi[15] adapted

RK-embedded harmonic mean for solving the ordinary dif-

ferential equations. Evans and Yaacob[16] proposed a fourth

order RK method based on the Heronian mean formula.

It is known that the general p-stage RK method for solv-

ing ẏ(x) = f(x, y(x)) is defined by

yn+1 = yn + h

p∑
i=1

biki

where

ki = f(xn + cih, yn + h

p∑
i=1

aijki)

ci =

p∑
j=1

aij , i = 1, 2, 3, · · · , p

bi =

p∑
j=1

aij , i = 1, 2, 3, · · · , p

with p dimensional vectors c and b and the (p × p) matrix

A(aij). The RK(p, p + 1) methods with a built-in error

estimate have been proposed by Merson[12] and Fehlberg[13].

Further, the above can be represented in Butcher array form

of order p + 1.
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cp ap,1 ap,2 · · · ap,p−1
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b1 b2 · · · bp−1 bp bp+1

The following Butcher array representation has order p.
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The values of yn+1 from a given value of yn are obtained
from the above two methods of order p + 1 and p, respec-
tively and the difference of the results computed by those
methods is used to determine the error estimate.

The RK root mean square (RKARMS (4,4)) method is
found to have comparatively less local truncation error
(LTE), global truncation error (GTE), and error estimate,
and plays a key role in computing numerical solutions of
industrially applicable problems as well as image process-
ing problems. Keeping this in view, a modest effort has
been made to develop a new numerical method with less
computational error.

In this paper, the edge detection problem is solved with
different approaches using presently developed new RK-
embedded root mean square and raster scheme. The rest
of the paper is organized as follows. In Section 2, the em-
bedded RKARMS (4,4) method is discussed in detail with
proof. In addition, the error control of RKARMS(4,4) is
analyzed, and its subsection deals with LTE, GTE, and es-
timation of error. Section 3 gives an outline idea about
the functions of CNN and its structure. Section 4 deals
with the technical rationale of raster CNN simulation and
its performance. Moreover, the subsection discusses the
pseudo code for image-based raster behavioral CNN sim-
ulation. Section 5 discusses various numerical integration
techniques. Section 6 discusses the simulation and exper-
imental results of the given images. Finally, conclusion is
given in Section 7.

2 Development of RK-embedded
RKARMS method

Consider the ordinary differential equation of initial value
problem

ẏ(x) = f(x, y(x)), x > x0 (1)

where y(x0) = y0, f : R ×Rm is sufficiently differentiable
in a neighborhood of the exact solution (x, y(x)), x ∈ [a, b].

An embedded explicit RK pair is adopted to find numer-
ical solution of (1). A general s-stage RK pair is written in
the form of Butcher array.

C A

bT

b̂T

ET

(2)

The symbols defined by C, A, and bT have order p, and
those defined by C, A, and b̂T have order (p + 1). Using
these two methods, the values of y at x = xn+1 = xn+h,

can be expressed as

yn+1 = yn + h

s∑
i=1

biki (3)

ŷn+1 = yn + h

s∑
i=1

b̂iki

where h is the step size, and

ki = f(xn+cih, yn+h

s∑
i=1

aijki), ci =

s∑
j=1

aij , i = 1, 2, · · ·

with s dimensional vectors c and b and the (s × s) matrix
A(aij). From the embedded form, LTE may be computed
from the formula: LTE = yn+1 − ŷn+1. It is of interest
to note that LTE controls the step size. The four-stage
method with the Butcher array form is written as

0

c2 a21

c3 a31 a32

c4 a41 a42 a43

b1 b2 b3 b4

(4)

The fourth-order RK arithmetic mean (RKAM) can be
written in the Butcher array form

0
1

2

1

2
1

2
0

1

2
1 0 0 1 0

1
1

6

2

3

2

3

1

6

yn+1 = yn +
h

3

(
k1 + k2

2
+

k2 + k3

2
+

k3 + k4

2

)
(5)

where

k1 = f(xn, yn)

k2 = f(xn +
h

2
, yn +

hk1

2
)

k3 = f(xn +
h

2
, yn +

hk2

2
)

k4 = f(xn + h, yn + hk3). (6)

From (4)–(6), the RK methods with Butcher array can also
be written in the modified form

0
1

2

1

2
1

2
0

1

2
1 0 0 1

1

3

1

3

1

3

(7)
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The fourth-order RK root mean square (RKRMS) is
given by

yn+1 = yn +
h

3

(√
k2
1 + k2

2

2
+

√
k2
2 + k2

3

2
+

√
k2
3 + k2

4

2

)

(8)
where

k1 = f(xn, yn)

k2 = f(xn +
1

2
h, yn +

1

2
hk1) (9)

k3 = f(xn +
1

2
h, yn +

1

16
hk1 +

7

16
hk2)

k4 = f(xn + h, yn +
1

8
hk1 − 17

56
hk2 +

33

28
hk3).

Combination of RKAM and RKRMS ((5) and (8)) is re-
ferred to as RKARMS (4,4), and can be formulated as

k1 = f(xn, yn) = k∗1

k2 = f(xn +
h

2
, yn +

hk1

2
) = k∗2

k3 = f(xn +
h

2
, yn +

hk2

2
)

k4 = f(xn + h, yn + hk3)

k∗3 = f(xn +
1

2
h, yn − 1

48
hk1 +

25

48
hk2)

k∗4 = f(xn + h, yn +
1

8
hk1 − 17

56
hk2 +

33

28
hk3)

yn+1 = yn +
h

3

(
k1 + k2

2
+

k2 + k3

2
+

k3 + k4

2

)

y∗n+1 = yn +
h

9

(
k∗1 + 2(k∗2 + k∗3) + k∗4+

√
|k∗1 + k∗2 |+

√
|k∗2 + k∗3 |+

√
|k∗3 + k∗4 |

)
.

(10)

The Butcher array form for embedded RKARMS(4,4) is
expressed as
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3
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3
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3
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Hence, by (2)

bT = yAM
n+1

yAM
n+1 = yn +

h

3

(
k1 + k2

2
+

k2 + k3

2
+

k3 + k4

2

)

b̂T = yRMS
n+1 =

yn +
h

9

(
k∗1 + 2(k∗2 + k∗3) + k∗4+

√
|k∗1 + k∗2 |+

√
|k∗2 + k∗3 |+

√
|k∗3 + k∗4 |

)

and the estimation of the LTE, ET =
∣∣∣bT − b̂T

∣∣∣, where yAM
n+1

and yRMS
n+1 are numerical approximations at xn+1 obtained

by arithmetic mean (AM) and root mean square (RMS),
respectively. In the RKARMS (4, 4) method, four stages
are required to obtain the solution, which share the same
set of vectors k1 and k2 using bT and b̂T approximately, but
k3 and k4 use bT while k∗3 and k∗4 use b̂T.

2.1 Error control analysis for RKARMS
(4,4)

It is well known that the primary types of error in the
numerical solution of ordinary and partial differential equa-
tions are truncation and rounding errors. Let us now study
and compare LTE and GTE. Henrichi[17] and Lambert[18, 19]

discussed in detail the following theorem.
Theorem 1. Let the function f(x, y) be defined and

continuous for all points (x, y) such that a 6 x 6 b,
−∞ < y < ∞, where a and b are finite. If f satisfies a
Lipschitz condition, i.e., there exists a constant L such that
|f(x, y)− f(x, y∗)| 6 L(y − y∗) for a 6 x 6 b and all y, y∗,
then for any initial value a, there exists a unique solution
of the initial value problem ẏ = f(x, y), y(a) = α where L
is called the Lipschitz constant (17− 19)/(18− 20).

Definition 1. The LTE at the point xn+1 is the dif-
ference between the computed value yn+1 and the value at
the point xn+1 on the solution curve that goes through the
point (xn, yn).

Definition 2. The GTE in the point xn+1 is defined
as yn+1 − y(xn+1), where y(x) denotes the solution of the
given initial value problem.

2.2 Derivation of LTE for RKARMS (4,4)

According to Lotkin[20] and Ralston[21], the error
estimate for fourth order RK schemes is given by
|ψ(xn, yn : h)| 6 (73/720)ML4, where M and L are posi-
tive constants. To control the step size h, use (10) to obtain
an estimate LTE for the RKARMS(4, 4) as

LTE = yn+1 − y∗n+1.

The LTE for the classical fourth-order RKAM is

yAM
n+1 = yn + LTEAM

and for RK based on RMS is

yRMS
n+1 = yn + LTERMS



288 International Journal of Automation and Computing 6(3), August 2009

where LTEAM and LTERMS are the LTEs in RKAM and
RKRMS. The difference between the RKAM and RKRMS
at xn+1 gives an error estimate as

yAM
n+1 − yRMS

n+1 = LTEAM − LTERMS .

The LTE for RKAM is given by

LTEAM =
h5

2880
[−24ff4

y + f4fyyyy+

2f3fyfyyy − 6f3f2
yy + 36f2f2

y fyy]

(11)

where the LTE of the RKRMS is given by

LTERMS =
h5

184320
[−429ff4

y − 64f4fyyyy−

48f3fyfyyy − 96f3f2
yy − 2454f2f2

y fyy].

(12)

The absolute difference between LTEAM − LTERMS is
given by

|LTEAM − LTERMS | = h5

184320
[1107ff4

y +

128f4fyyyy + 176f3fyfyyy + 288f3f2
yy+

4758f2f2
y fyy].

(13)

By following an argument suggested by Lotkin[20], if we
assume that the following bounds for f and its partial
derivatives hold for x ∈ [a, b] and y ∈ (−∞ ,∞), we have

|f(x, y)| < Q

∣∣∣∣
∂i+jf(x, y)

∂xi∂yj

∣∣∣∣ <
P i+j

Qj−1
, i + j 6 p (14)

where P and Q are positive constants, and p is the order of
the method.

In the present analysis, p = 4. Using (14), one may arrive
at

|fy| < P

∣∣ff4
y

∣∣ <
Q4P 4

Q3

∣∣f4fyyyy

∣∣ <
Q4P 4

Q3

∣∣f3fyfyyy

∣∣ < Q3P
P 3

Q2

∣∣f3f2
yyy

∣∣ < Q3(
P 2

Q
)2

∣∣f2f2
y fyy

∣∣ < Q2P 2(
P 2

Q
)





< P 4Q. (15)

From (13) and (14), we obtain

LTEAM − LTERMS 6 (
6457

184320
)P 4Qh5. (16)

Hence,
∣∣∣yAM

n+1 − yRMS
n+1

∣∣∣ 6 6457

184320
P 4Qh5. (17)

We assume the tolerance TOL = 0.00005. Taking∣∣yAM
n+1 − yRMS

n+1

∣∣ 6 TOL and using (17), step-size (∆T ) se-
lection can be determined in order to control the error

6457

184320
P 4Qh5 < TOL

or

h <

(
28.54764 · TOL

P 4Q

)1

5 . (18)

2.3 GTE for RKAM

Yaakub and Evans[22] proved that the GTE for RKAM
is of order h4.

2.4 GTE for fourth-order four-stage
RKRMS method

With respect to the fifth decimal place, Taylor′s series at
x = xn may be written as

y(xn + h) = y(xn) + hf +
h2

2
ffy +

h3

6
(ff2

y +

f2fyy) +
h4

27
(f3fyyy +

1

6
f2fyfyyy)+

h5

120
(ff4

y + f4fyyyy + 7f3fyfyyyy+

11f2f2
y fyy + f3f2

yy).

(19)

The LTE for RKRMS is the difference between (8) and
(19):

LTERMS =
h5

184320
[−429ff4

y − 64f4fyyyy−

48f3fyfyyy − 96f3f2
yy − 2454f2f2

y fyy].

(20)

By using the procedure adapted by Evans and Yaakub[14]

to evaluate the GTE for the RKAM, we have for the RMS:

εn+1 6 εn + hLεn +
h2

2
Lεn +

h3

6
Lεn+

h4

24
Lεn +

h5

184320
yv(ξ)

where 0 < ξ < 1 and

|εn+1| 6
(

1 + hL +
h2L

2
+

h3L

6
+

h4L

24

)
|εn|+ h5

184320
M 6 (1 + c1) |εn|+ B1

|yv(x)| 6 M

where

c1 = L

(
n∑

p=1

hp−1

p!

)
h

A1 = 1 + c1

B1 =
h5

184320
M.

A simple induction proof leads to

|εn| 6 An
1 |ε0|+ (

n−1∑

k=0

Ak
1)B1.

For A1 6= 1, and ε0 = 0, the term |εn| can be written as

|εn| 6 (
An

1 − 1

A1 − 1
)B1. (21)
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If we use the inequality 1 + x 6 ex, we get

An
1 = (1 + c1)

n =

(
1 + hL

4∑
p=1

hp−1

p!

)n

6 ec1n =

eLhn(

4∑
p=1

hp−1

p!
) = eDL(xn−x0) (22)

where

D =

4∑
p=1

hp−1

p!
.

By substituting (22) into (21), for ε we obtain

|εn| 6 h4

184320 LD
M(eDL(xn−x0) − 1)

and therefore, the GTE for the fourth-order RMS method is
of order h4. The LTE represents the magnitude of the error
involved in the numerical solution obtained by the corre-
sponding numerical technique. From the above discussion,
we can conclude that if the LTE of a numerical method is
O(hp+l), then the GTE is O(hp). The estimate of the GTE
cannot be used for practical error estimation or error con-
trol because the value from the GTE is less accurate than
the LTE.

2.5 Estimation of error for RKARMS
(4,4)

It is significant to point out that in the RKARMS(4,4)
method with error control program, we choose the error es-
timate as the difference between the fourth order RKAM
method and the RK method. From (17), the error estimate
is expressed as

ERREST = |YAM − YRMS | 6457

184320
. (23)

3 Outline of CNN

The first-order nonlinear differential equation defining
the dynamics of a cellular nonlinear network cell[1,2] is given
by

c
dxij(t)

dt
= − 1

R
xij(t) +

∑

c(k,l)∈N(i,j)

A(i, j; k, l)ykl(t)+

∑

c(k,l)∈N(i,j)

B(i, j; k, l)ukl(t) + I,

1 6 i 6 M ; 1 6 j 6 N (24)

and the output equation is given by

yij(t) =
1

2
(|xij(t) + 1 | − |xij(t) − 1|) ,

1 6 i 6 M ; 1 6 j 6 N.
(25)

where xij is the state of cell C(i, j), xij(0) is the initial
condition of the cell, c is a linear capacitor, R is a linear
resistor, I is an independent current source, A(i, j; k, l)ykl

and B(i, j; k, l)ukl are voltage controlled current sources for
all cells C(k, l) in the neighborhood N(i, j) of cell C(i, j),
and yij indicates the output equation. CNN is an ana-
log nonlinear dynamic processor array, which is shown in
Fig. 1 (a).

From (1), it is observed that the summation operators of
each cell is affected by its neighboring cells. A(·) represents
the output of neighboring cells and is called feedback oper-
ator, B(·) in turn affects the input control and is known as
the control operator.

(a)

(b)

(c)

(d)
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(e)

(f)

Fig. 1 CNN[1,2]. (a) Array structure; (b) Block diagram; (c)

Neighborhood of cell C(i, j) for r = 2; (d) Representation of

3 × 3 CNN; (e) The characteristic of the nonlinear controlled

source; (f) Equivalent block diagram of a CNN cell

It is of interest to note that the entry values of matrices
A(·) and B(·) are dependent on the application chosen by
the user which are space invariant and are referred to as
cloning templates. A current bias I and cloning templates
establish the transient behavior of the cellular nonlinear
network. A continuous-time cell implementation is shown
in Fig. 1 (b) as an equivalent block diagram. CNNs have
a set of analog values as input and its programmability is
done via cloning templates. Fig. 1 (c) shows the neighbor-
hood of cell C(i, j) for r = 2, and Fig. 1 (d) is a represen-
tation of 3 × 3 CNN. Thus, programmability is one of the
most attractive properties of CNNs.

4 Technical rationale of raster CNN
simulations and performance

Equation (1) is space-invariant, which means that
A(i, j; k, l) = A(i−k, j−1) and B(i, j; k, l) = B(i−k, j−1)
for all i, j, k, l. Therefore, the solution of the system of
difference equations can be seen as a convolution process be-
tween the image and the CNN processors. The fundamental
approach is to imagine a square subimage area centered at
(x, y), with the subimage being in the same size as the tem-
plates involved in the simulation. The center of this subim-
age is then moved from pixel to pixel starting, say, at the top
left comer and applying A and B templates at each location
(x, y) to solve the differential equation. This procedure is
repeated for each time step, for all the pixels in the image.
An instance of this image scanning-processing is referred
to as “iteration”. The processing stops when it is found
that the states of all CNN processors have converged to
steady-state values, and the outputs of its neighbor cells are
saturated, e.g., they have a ± 1 value[1,2]. This whole sim-
ulating approach is referred to as raster simulation. Raster
CNN simulation is an image scanning-processing technique
for solving the system of difference equations of CNN. A

simplified pseudo code presented below gives the exact no-
tion of the raster/single layer approach[7].

The Pseudo code for image based raster behavioral CNN
simulation is as follows

Step 1. During initial stage, get the input image, initial
conditions, and templates from the end user.

/* M,N = Number of rows and columns of the 2D image */
while (converged-cells < total number of cells)
{
for (i = 1; i 6 M ; i + +)
for (j = 1; j 6 N ; j + +)
{
if (convergence-flag[i][j])
continue;

/* current cell already converged*/

Step 2. Calculate the next state

xij(tn+1) = xij(tn) +

∫ tn+1

tn

f ′(x(tn))dt.

Step 2.1. Calculating by RK-embedded Heronian mean
method.

k1 = f(xn, yn) = k∗1

k2 = f(xn +
h

2
, yn +

hk1

2
) = k∗2

k3 = f(xn +
h

2
, yn +

hk2

2
)

k4 = f(xn + h, yn + hk3)

k∗3 = f(xn +
1

2
h, yn − 1

48
hk1 +

25

48
hk2)

k∗4 = f(xn + h, yn − 1

24
hk1 +

47

600
hk2 +

289

300
hk3)

yn+1 = yn + h[
k2

6
+

k3

6
+

2

3
(

k1k2

k1 + k2
) +

2

3
(

k3k4

k3 + k4
)].

Step 2.2. Calculating by RK-embedded harmonic mean
method.

k1 = f(yn)

k2 = f(yn +
hk1

2
)

k3 = f(yn − hk1

8
+

5hk2

8
)

k4 = f(yn − hk1

4
+

7hk2

20
+

9hk3

10
)

yn+1 = yn + h[
k2

6
+

k3

6
+

2

3
(

k1k2

k1 + k2
) +

2

3
(

k3k4

k3 + k4
)].

Step 2.3. Calculating by RK-embedded root mean
square method.

k1 = f(xn, yn) = k∗1

k2 = f(xn +
h

2
, yn +

hk1

2
) = k∗2

k3 = f(xn +
h

2
, yn +

hk2

2
)

k4 = f(xn + h, yn + hk3)

k∗3 = f(xn +
1

2
h, yn − 1

48
hk1 +

25

48
hk2)

k∗4 = f(xn + h, yn +
1

8
hk1 − 17

56
hk2 +

33

28
hk3).

Step 3. Check the convergence criteria.

If

(
dxij(tn)

dt

)
= 0 and ykl = ± 1, ∀ c(k, l) ∈ Nr(i, j)
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{
convergence-flag[i][j] = 1;
converged-cells++ ;
}
}
Step 4. Update the state values of the entire Image.

for (i = 1; i 6 M ; i + +)
for (j = 1; j 6 N ; j + +)
{
if (convergence-flag[i][j]) continue;
xij(tn) = xij(tn+1);
}
Number of iteration++;
}
End

For simulation purposes, a discretized form of (24) is
solved within each cell to simulate its state dynamics. One
common way of processing a large complex image is using a
raster approach[1,2]. This approach implies that each pixel
of the image is mapped onto a CNN processor[23]. That is,
it has an image processing function in the spatial domain,
expressed as

φ(x, y) = χ(η(x, y)) (26)

where φ(·) the processed image, η(·) is the input image, and
χ is an operator on η(·) defined over the neighborhood of
(x, y). It is an exhaustive process from the view of hardware
implementation. For practical applications, in the order of
256×256 pixels, the hardware would require a large number
of processors, which would make its implementation unfea-
sible. At this juncture, an alternative choice to this scenario
is to make the image processing operator multiplex.

5 Integration techniques: numerical
approaches

It is understood that a system of nonlinear differential
equation is to describe the CNN. It implies that we need
to discretize the differential equation for performing behav-
ioral simulation. To perform computation, a normalized
time differential equation for describing CNN is used by
Nossek et al.[24]

f ′(x(mT )) =
dxij(mT )

dt
= −xij(mT )+

∑
c(k,l)∈Nr(i,j)

A(i, j; k, l)ykl(mT )+

∑
c(k,l)∈Nr(i,j)

B(i, j; k, l)ukl + I

1 6 i 6 M ; 1 6 j 6 N

(27)

yij(mT ) =
1

2
(|xij(mT ) + 1 | − |xij(mT ) − 1|) ,

1 6 i 6 M ; 1 6 j 6 N
(28)

where T is the normalized time. For the purpose of the
initial-value problem, well established single step methods
of numerical integration techniques are used[23,25].

These methods can be derived using the definition of the
definite integral

xij((m + 1)T ) − xij(mT )) =

∫ Tm+1

Tm

f ′(x(mT ))d(mT ).

(29)

The RK methods are single step algorithms for the behav-
ioral simulation of CNN, and they vary in the way they
evaluate the integral presented in (4).

5.1 Fourth-order RK method based on
embedded means

5.1.1 RK-embedded Heronian mean

The fourth-order RK-embedded Heronian mean[26] is
given by

yn+1 = yn +
h

3
[
k1 + k2

2
+

k2 + k3

2
+

k3 + k4

2
] (30)

y∗n+1 = yn +
h

9
[k1 + 2(k2 + k3) + k4+

√
|k1 + k2|+

√
|k2 + k3|+

√
|k3 + k4|]

(31)

where

k1 = f(xn, yn) = k∗1

k2 = f(xn +
h

2
, yn +

hk1

2
) = k∗2

k3 = f(xn +
h

2
, yn +

hk2

2
)

k4 = f(xn + h, yn + hk3)

k∗3 = f(xn +
1

2
h, yn − 1

48
hk1 +

25

48
hk2)

k∗4 = f(xn + h, yn − 1

24
hk1+

47

600
hk2 +

289

300
hk3).

(32)

5.1.2 RK-embedded Harmonic mean

The fourth-order RK-embedded Harmonic mean[15] is
given by

yn+1 = yn + h[
k2

6
+

k3

6
+

2

3
(

k1k2

k1 + k2
) +

2

3
(

k3k4

k3 + k4
)]

(33)

k1 = f(yn)

k2 = f(yn +
hk1

2
)

k3 = f(yn − hk1

8
+

5hk2

8
)

k4 = f(yn − hk1

4
+

7hk2

20
+

9hk3

10
).

(34)

5.1.3 Present method: RK-embedded root mean
square

The newly proposed fourth-order RK-embedded root
mean square (see Section 2) is given by

yn+1 = yn +
h

3

(√
k2
1 + k2

2

2
+

√
k2
2 + k2

3

2
+

√
k2
3 + k2

4

2

)

(35)

y∗n+1 = yn +
h

9

(
k1 + 2(k2 + k3)+

k4 +
√
|k1 + k2|+

√
|k2 + k3|+

√
|k3 + k4|

)

where

k1 = f(xn, yn) = k∗1

k2 = f(xn +
h

2
, yn +

hk1

2
) = k∗2
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k3 = f(xn +
h

2
, yn +

hk2

2
)

k4 = f(xn + h, yn + hk3)

k∗3 = f(xn +
1

2
h, yn − 1

48
hk1 +

25

48
hk2)

k∗4 = f(xn + h, yn +
1

8
hk1−

17

56
hk2 +

33

28
hk3). (36)

6 Discussion on simulation and experi-
mental results

Using high power workstation, all the simulated outputs
are presented below. It is observed that the actual CPU
time used is equal to the simulation time. Figs. 2 (b) and
(c) illustrate the results of the raster simulator obtained
from a complex image of 256 × 256 pixels. The results
of the raster simulator obtained from a complex image of
256×256 pixels are depicted, respectively in Figs. 2 (b) and
(c) using embedded RK-Heronian mean and embedded RK-
harmonic mean. On the original image, in order to get the
images shown in Figs. 2 (b), (c), and (d), respectively, we
have applied an averaging template followed by an edge de-
tection template. It is observed in Figs. 2 (b), (c), and (d)
that the edges obtained by RK-embedded root mean square
are better than those obtained by embedded RK-heronian
mean and embedded RK-harmonic mean. Furthermore, by
raster CNN simulation the simulation took 185.43 s.

(a) (b)

(c) (d)

Fig. 2 Simulation and experimental results. (a) Original in-

put image; (b) After averaging and edge detection templates

by employing RK-embedded root mean square algorithm; (c)

After averaging and edge detection templates by employing RK-

embedded Heronian mean square algorithm; (d) After averaging

and edge detection templates by employing RK-embedded har-

monic mean algorithm.

It is seen from Fig. 3 that RK-embedded root mean
square allows us to select a maximum step-size (∆T ) as
compared to other two methods irrespective of the selection
of templates. Fig. 4 shows that the importance of selecting
an appropriate time step-size (∆T ). The results in Fig. 4
were obtained by simulating a small image of size 256× 256
pixels using edge detection template on an image.

Fig. 3 Maximum step size (∆T ) yields the convergence for three

different templates

Fig. 4 Comparisons of five numerical integration techniques us-

ing the edge detection template

It is of significance to see in Fig. 4 that for a larger step-
size (∆T ), RK-embedded root mean square takes shorter
simulation time than embedded RK-Heronian mean and
embedded RK-harmonic mean. Furthermore, if the step
size chosen is too small, it might take many iterations,
hence, it will take a longer time to achieve convergence.
However, on the other hand, if the step size taken is too
large, it might not converge at all, or it would converge to
erroneous steady state values for the cases of adapting ex-
plicit Euler and RK-gill methods. One of the remarkable
results of the present investigation is that even for a larger
time step-size (∆T ), the embedded RK-root mean square
gives better simulation results.

It is seen from Fig. 5 that the maximum step-size (∆T )
yields the convergence for three different templates using
six different numerical integration techniques.

In Table 1, it can be observed that LTE, GTE, and error
estimation of the proposed RK-embedded root mean square
method are less than the RK-embedded Heronian mean and
RK-embedded harmonic mean.
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Table 1 Comparison of LTE, GTE, error estimation for different fourth-order four stage RK-embedded techniques

RK-embedded
LTE GTE Error estimation

methods

RK-embedded root LTEAM − LTERMS 6 6457

184320
) |εn| 6 (

h4

184320 LD
)×

ERREST = |YAM − YRMS |
6457

184320
mean square P 4Qh5 =

∣∣∣yAM
n+1 − yRMS

n+1

∣∣∣ 6 6457

184320
P

4
Qh

5
M(eDL(xn−x0) − 1)

RK-embedded LTEAM − LTEHeM 6 (
121809

1658880
) |εn| 6 (

h4

1658880 LD
)×

ERREST = |YAM − YHeM |
121809

1658880
Heronian mean P 4Qh5 =

∣∣∣yAM
n+1 − yHeM

n+1

∣∣∣ 6 121809

1658880
P

4
Qh

5
M(eDL(xn−x0) − 1)

RK-embedded LTEAM − LTEHeM 6 (
5469

69120
) |εn| 6 (

h4

69120LD
)×

ERREST = |YAM − YHeM |
5469

69120
Harmonic mean P 4Qh5 =

∣∣∣yAM
n+1 − yHeM

n+1

∣∣∣ 6 5469

69120
P

4
Qh

5
M(eDL(xn−x0) − 1)

Fig. 5 Maximum step-size (∆T ) yields the convergence for three

different templates using six numerical integration techniques

7 Conclusions

A novel integration algorithm by formulating an embed-
ded method involving RK methods based on AM and RMS
with error control for general CNNs is proposed. By us-
ing the newly proposed embedded method, a versatile al-
gorithm for simulating raster CNN arrays are implemented
for any kind as well as any size of input image. It is perti-
nent to pin-point out here that through simulation results
and comparison of RK-embedded root mean square guar-
antees the accuracy of the detected edges and greatly re-
duces the impact of random noise on the detection results
in comparison with the RK-embedded Heronian mean and
RK-embedded harmonic mean. It is of interest to mention
that using RK-embedded root mean square, the edges of
the output images are proved to be feasible and effective by
theoretic analysis and simulation.
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