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Abstract: This paper proposes one method of feature selection by using Bayes′ theorem. The purpose of the proposed method
is to reduce the computational complexity and increase the classification accuracy of the selected feature subsets. The dependence
between two attributes (binary) is determined based on the probabilities of their joint values that contribute to positive and negative
classification decisions. If opposing sets of attribute values do not lead to opposing classification decisions (zero probability), then the
two attributes are considered independent of each other, otherwise dependent, and one of them can be removed and thus the number
of attributes is reduced. The process must be repeated on all combinations of attributes. The paper also evaluates the approach by
comparing it with existing feature selection algorithms over 8 datasets from University of California, Irvine (UCI) machine learning
databases. The proposed method shows better results in terms of number of selected features, classification accuracy, and running time
than most existing algorithms.
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1 Introduction

As computer and database technologies develop rapidly,
data accumulates in a speed unmatchable by human capac-
ity of data processing. Data mining[1−4] as a multidisci-
plinary joint effort from databases, machine learning, and
statistics, is championing in turning mountains of data into
nuggets. Researchers and practitioners realize that in order
to use data mining tools effectively, data preprocessing is
essential to successful data mining[5, 6]. Feature selection is
one of the important and frequently used techniques in data
preprocessing for data mining[7, 8]. It reduces the number
of features, removes irrelevant, redundant, or noisy data,
and brings the immediate effects for applications, speed-
ing up a data mining algorithm, improving mining perfor-
mance such as predictive accuracy and result comprehensi-
bility. Feature selection is a fertile field of research and
development in statistical pattern recognition[9−13], ma-
chine learning[7, 14−16], and data mining[17−19] since the
1970s, and widely applied to many fields such as text
categorization[20−22], image retrieval[23, 24], customer rela-
tionship management[25], intrusion detection[26], and ge-
nomic analysis[27]. Feature selection is a process that selects
a subset of original features. The optimality of a feature
subset is measured by an evaluation criterion.

As the dimensionality of a domain expands, the features
N increases in number. Finding an optimal feature sub-
set is usually intractable[16] and many problems related
to feature selection have been shown to be NP-hard[28].
A typical feature selection process consists of four basic
steps namely, subset generation, subset evaluation, stop-
ping criterion, and result validation[18]. Subset generation
is a search procedure[5, 29] that produces candidate feature
subsets for evaluation based on a certain search strategy.
Each candidate subset is evaluated and compared with the
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previous best one according to a certain evaluation crite-
rion. If the new subset turns out to be better, it replaces
the previous best subset. The process of subset genera-
tion and evaluation is repeated until a given stopping cri-
terion is satisfied. Then, the selected best subset usually
needs to be validated by prior knowledge or different tests
via synthetic and/or real world datasets. Feature selec-
tion can be found in many areas of data mining such as
classification, clustering, association rules, and regression.
For example, feature selection is called subset or variable
selection in statistics[30]. A number of approaches to vari-
able selection and coefficient shrinkage for regression are
summarized in [31]. In this survey, we focus on feature se-
lection algorithms for classification and clustering. Early
research efforts mainly focus on feature selection for clas-
sification with labeled data[12, 18, 32] (supervised feature se-
lection) where class information is available. The latest
developments, however, show that the above general proce-
dure can be well adopted to feature selection for clustering
with unlabeled data[33−36], (or unsupervised feature selec-
tion) where data is unlabeled.

Feature selection algorithms designed with different eval-
uation criteria broadly fall into three categories: the filter
model[17, 37−39], the wrapper model[16, 19, 35, 40], and the hy-
brid model[27, 41, 42]. The filter model relies on general char-
acteristics of the data to evaluate and select feature sub-
sets without involving any mining algorithm. The wrapper
model requires one predetermined mining algorithm and
uses its performance as the evaluation criterion. It searches
for features better suited to the mining algorithm aiming to
improve mining performance, but it also tends to be more
computationally expensive than the filter model[16, 29]. The
hybrid model attempts to take advantage of the two models
by exploiting their different evaluation criteria in different
search stages.

In this paper, we give an overview of the popularly
used feature selection algorithms under a unified framework.
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Moreover, we propose a novel feature selection algorithm
based on the Bayes′ theorem for determining the depen-
dent attributes in a dataset and removing those dependent
attributes, thereby reducing the attribute set to increase the
classification accuracy and reduce the computational time.
Experiments on real world datasets show that the proposed
method is favorable in terms of its effectiveness and effi-
ciency when compared with other state-of-art algorithms.

2 Related work

Feature selection is a mature area of research. We will
present a brief overview of the different feature selection
methods.

Blum and Langley[7] classified the feature selection tech-
niques into three basic approaches. In the first approach,
known as the embedded approach, a basic induction method
is used to add or remove features from the concept de-
scription in response to prediction errors on new instances.
The second approach is known as the filtering approach, in
which, various subsets of features are explored to find an op-
timal subset, which preserves the classification. The third
approach is known as wrapper methods which evaluate al-
ternative feature sets by running some induction algorithm
on the training data and using the estimated accuracy of
the resulting classifier as its metric.

Quinlans iterative dichotomiser 3 (ID3)[43] and classifier
4.5 (C4.5)[44], classification and regression trees (CART)
proposed by Breiman et al.[45] are some of the most success-
ful supervised learning algorithms. These algorithms use a
greedy search through the space of decision trees, at each
stage using an evaluation function to select the attribute
that has the best ability to discriminate among the classes.
Michalski[46] proposed the algorithm quasi-optimal (AQ)
learning algorithm, which uses positive and negative exam-
ples of a class along with a user defined criterion function,
to identify a disjunctive feature set that can maximize the
positive events and minimize the negative events. Narendra
and Fukunaga[47] presented a branch-and-bound algorithm
for finding the optimal feature set that uses a top-down ap-
proach with back-tracking. Pudil et al.[48] proposed a set of
suboptimal algorithms called the floating search methods
that do not require the fulfillment of monotonicity condi-
tion for feature selection criterion function. Somol et al.[49]

provided a modified and efficient branch-and-bound algo-
rithm for feature selection. Though computationally less
expensive than the branch-and-bound algorithms, there ex-
ists no theoretical upper bound on the computational costs
of the algorithms because of their heuristic nature.

Kohari and John et al.[16] proposed another feature se-
lection framework known as the wrapper technique. The
wrapper methods evaluate alternative feature sets by run-
ning some induction algorithm on the training data and us-
ing the estimated accuracy of the resulting classifier as its
metric. The major disadvantage of the wrapper approach
is that it requires much computation time.

A number of feature selection techniques based on
the evolutionary approaches have also been proposed.
Casillas et al.[50] presented a genetic feature selection tech-
nique which is integrated into a multi-stage genetic learn-
ing process to obtain a fuzzy rule based classification sys-

tem (FRBCS). In the first phase of this method, a filtering
approach is used to determine an optimal feature subset
for a specific classification problem using class-separability
measures. This feature subset along with expert opinion is
used to obtain the adequate feature subset cardinality in
the second phase, which is used as the chromosome length.
Xiong[51] proposed a hybrid approach to input selection,
which distinguished itself from existing filter and wrapper-
based techniques, but utilized the advantages of both. This
process uses case based reasoning to select candidate sub-
sets of features which are termed as “hypothesis”. The
performance of case-based reasoning under a hypothesis is
estimated using training data on a “leave-one-out” proce-
dure. The error estimate is then combined with the sub-
set of selected attributes to provide an evaluation function
for the genetic algorithm to find the optimal hypothesis.
Kuncheva and Bezdek[52] proposed a genetic algorithm for
simultaneous editing and feature selection to design 1-nn
classifiers. They had posed the problem as bi-criteria com-
binatorial optimization problem having an NP-hard search
space. Ho et al.[53] proposed the design of an optimal near-
est neighbor classifier using intelligent genetic algorithm.
Thawonmas and Abe[54] suggested a feature selection tech-
nique to eliminate irrelevant features, based on analysis of
class regions generated by a fuzzy classifier. The degree of
overlaps in a class region is used to define exception ratio,
and the features that have the lowest sum of exception ra-
tios are the relevant ones. Irrelevant features are eliminated
using a backward selection search technique.

Kira and Rendell[55] proposed a different approach to fea-
ture selection and the filter based feature ranking algorithm
(RELIEF) also proposed by them assigns a weight to each
feature based on the ability of the feature to distinguish
among the classes, and then selects those features whose
weights exceed a user defined threshold as relevant features.
The weight computation is based on the probability of the
nearest neighbors from two different classes having differ-
ent values for an attribute and the probability of two near-
est neighbors of the same class having the same value of
the attribute. The higher the difference between these two
probabilities, the more significant is the attribute. Inher-
ently, the measure is defined for a two-class problem which
can be extended to handle multiple classes, by splitting the
problem into a series of two-class problems. Kononenko[56]

suggested to use k-nearest neighbours to increase the reli-
ability of the probability approximation. It also suggested
how RELIEF can be extended to work with multiple sets
more efficiently. Weighting schemes are easier to implement
and are preferred for their efficiency.

Learning to classify objects is an inherently difficult prob-
lem for which several approaches like instance-based learn-
ing or nearest neighbor-based algorithms are used. How-
ever, the nearest neighbor algorithms need some kind of
distance measure. Cost and Salzberg[57] emphasized the
need to select appropriate metrics for symbolic values.
Stanfill and Waltz[58] proposed the value difference metric
(VDM) which measures the distance between values of sym-
bolic features. It takes into account the overall similarity
of classification of all instances for each possible value of
each feature. Based on this, Cost and Salzberg[57] pro-
posed the modified value distance metric (MVDM) which
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is symmetric, and satisfies all the metric properties. They
showed that nearest neighbour algorithms perform well even
for symbolic data using this metric. It is observed that
distance-values are similar if the pairs occur with the same
relative frequency for all classes. Zhao and Tsang[59] pro-
posed an attribute reduction with fuzzy approximation op-
erators. Sharma and Paliwal[60] proposed a rotational lin-
ear discrimination analysis technique for dimensionality re-
duction which is a supervised learning technique that finds
a linear transformation such that the overlap between the
classes is minimum for the projected feature vectors in the
reduced feature space.

3 Proposed work

In this paper, we introduce a novel approach for feature
selection in high dimensional data using Bayes′ theorem.
The dependent attributes are identified and are removed
from the dataset. The dependent attributes are the at-
tributes, in which an attribute depends on the other at-
tribute in deciding the value of the class attribute. Depen-
dency between attributes are calculated by first grouping
them and then by calculating the probabilities of their val-
ues in deciding the value of class attribute using Bayes′

theorem. The difference between the probabilities is then
calculated. The procedure is repeated for all possible com-
binations of attributes, and the dependencies between the
whole attribute set in a dataset are found. Find the predic-
tive accuracy with classifiers and place the most accurate
attribute in the reduced attribute set. The paper also eval-
uates the approach by comparing it with existing feature
selection algorithms over 8 datasets from University of Cal-
ifornia, Irvine (UCI) machine learning databases[61]. The
proposed method shows better results in terms of number of
selected features, classification accuracy, and running time
than most existing algorithms.

3.1 Bayes′ theorem and the proposed
method for feature selection

Bayes′ theorem[62] describes how the conditional proba-
bility of a set of possible causes for a given observed event
can be computed from knowledge of the probability of each
cause and the conditional probability of the outcome of each
cause. It relates the conditional and marginal probabilities
of stochastic events A and B Bayes′ theorem is

P (A|B) =
P (B|A)P (A)

P (B)
. (1)

Each term in Bayes′ theorem has a conventional name P (A)
is the prior probability or marginal probability of A. It is
“prior” in the sense that it does not take into account any
information about B. P (A|B) is the conditional probability
of A, given B. It is also called the posterior probability be-
cause it is derived from or depends upon the specified value
of B. P (B|A) is the conditional probability of B, given A.
P (B) is the prior or marginal probability of B, and acts as
a normalizing constant.

In its most general form, Bayes′ theorem states that

P (Ai|B) =

P (B|Ai)P (Ai)

P (B|A1)P (A1) + P (B|A2)P (A2) + · · ·+ P (B|An)P (An)
(2)

where i is any number between 1 and n.
The general structure of a training set is shown in

Table 1. The predictor attribute a1 can take values
{a11, a12, · · · , a1n}, a2 can take values {a21, a22, · · · , a2n},
· · · , an can take values {an1, an2, · · · , ann}, and the class
attribute c can take the values {c1, c2, · · · , cn}.

Table 1 Structure of training dataset

a1 a2 · · · an c

a11 a21 an1 c1

a12 a22 an2 c2

· · · · · · · · · · · · · · ·
a1n a2n ann cn

This paper proposes an algorithm for feature selection.
The basic idea of the algorithm is to test the dependency
of all pairs of attributes in deciding the value of the class
attribute. The dependency of two attributes is measured by
the conditional probabilities of the class attribute given the
values of the attributes, which can be easily computed by
Bayes′ theorem. Two attributes are defined to be dependent
if the difference between their corresponding probabilities
satisfies a predefined threshold. If two attributes are iden-
tified to be dependent, either of them can be removed to
achieve the attribute reduction.

3.2 Proposed algorithm for feature selec-
tion

The main steps of the proposed algorithm are given be-
low.

1) Let A = {a1, a2, a3, · · · , an} be the initial set
of attributes and a1 = {a11, a12, · · · , a1n}, · · · , an =
{an1, an2, · · · , ann}.

2) Group attributes in set A into an attribute set of pairs.
3) For each attribute value aij in an attribute ai, find the

dependency between attributes ai with respect to attribute
values in set A using Bayes theorem.

if dependency exists then
store the attribute ai into another set B;

else increase i.

4) Use set B to find more dependent attributes and re-
move those attributes from the set A.

5) Find the predictive accuracy with classifiers and place
the most accurate attribute in set A.

The proposed algorithm is enumerated as follows:
Step 1. Let the initial set of predictor attributes be

A = {a1, a2, a3, · · · , an}, where a1 = {a11, a12, · · · , a1n},
a2 = {a21, a22, · · · , a2n}, · · · , an = {an1, an2, · · · , ann} and
class attribute c = {c1, c2, · · · , cn}

Step 2. Use Bayes′ theorem to calculate the probabili-
ties between attribute values.

When i = 0,

A0 = {a1, a2}
P (a11, a21 | c1) = 0

P (a12, a21 | c2) = 0

· · ·
P (a11, a22 | c1) = 0
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· · ·
P (a1n, a2n | cn) = 0.

No dependency exists. Increase i.
When i = 1,

A1 = {a1, a3}
P (a11, a31 | c1) = 0

P (a12, a31 | c2) = 0

· · ·
P (a11, a32 | c1) = 0

· · ·
P (a1n, a3n | cn) = 0.

No dependency exists. Increase i.

· · ·
When i = n− 2,

Ai = {a1, an}
P (a11, an1 | c1) = 0

P (a12, an1 | c2) = 0

· · ·
P (a11, an2 | c1) = 0

· · ·
P (a1n, ann | cn) = 0.

No dependency exists. Increase i.

· · ·

Ai = {an−1, an}
P ((an−1)1, an1 | c1) = 0

P ((an−1)2, an1 | c2) = 0

· · ·
P ((an−1)1, an2 | c1) = 0

· · ·
P ((an−1)n, ann | cn) = 0.

No dependency exists.
If there is dependency between any of the predictor at-

tributes ai and aj . Then, store them in set B.
Now,

B = {ai, aj}.
Loop terminates.
Step 3. B = {ai, aj}. From Set B, we found that there

is a relationship between the attributes ai and aj . Find
the predictive accuracy with classifiers and place the most
accurate attribute in set A.

4 System implementation

The proposed algorithm is implemented using Java. The
stepwise approach is as follows.

The input to the system is given as an attribute-relation
file format (ARFF) file. A table is created in Oracle using
the name specified in “@relation”. The attributes specified
under “@attribute” and instances specified under “@data”
are retrieved from the ARFF file and then they are added
to the created table. This procedure is followed for provid-
ing the training set as well as test set. The created table
acts as the dataset and is given as the input to the proposed
algorithm.

The number of predictor attributes and its distinct values
and number of distinct values in class attribute are calcu-
lated, and these values are used for the calculation of prob-
abilities. The probabilities of attribute are calculated using
Bayes′ theorem and the values are listed. The attributes
in the dataset are numbered from 1, 2, · · · , n. The relation-
ship between two attributes is denoted by X-> Y , where X
attribute 1 related to Y attribute 2 and their probabilities
with respect to class attribute are calculated using Bayes′

theorem and listed under it.
The combination of attribute value should occur at least

once in the dataset, because while finding the dependency
between attribute values if a combination of attribute value
did not occur once, then it will lead to alternate zeros re-
sulting in zero probability and dependency that cannot be
found. Thus, the above condition is checked before a com-
bination of attribute value is given to the proposed method.
The probabilities are calculated for the given input. Based
on the probabilities, the dependent attributes are identified.

5 Experimental results and discussion

The feature selection using Bayes′ theorem is applied to
many datasets, and the performance evaluation is done. We
presented the performance evaluation on 8 datasets.

All together 8 datasets are selected from the UCI ma-
chine learning repository and the UCI knowledge discovery
in databases (KDD) archive[61]. A summary of datasets is
presented in Table 2. For each dataset, we run all nine
feature-selection algorithms, Bayes′ theorem, wrapper sub-
set eval, consistency subset eval, InfoGain attribute eval,
GainRatio attribute eval, OneR attribute eval, ChiSquared
attribute eval, principal components, classifier subset eval,
respectively, and record the running time and the number
of selected features for each algorithm. We then apply naive
Bayes, decision tree (ID 3 & J 48), neural-network and sup-
port vector machine on the original dataset as well as each
newly obtained dataset containing only the selected features
from each algorithm and recorded the overall accuracy by
10 fold cross validation.

From Table 3, it is found that for all the datasets, some
feature selection algorithms (wrapper subset eval, consis-
tency subset eval, principal components, and classifier sub-
set eval) will select the attributes that are fewer than the
number of attributes selected by the proposed method.
However, when the selected attributes by the above spec-
ified existing feature selection methods are used for the
classification, the classification accuracy decreases gradu-
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ally. Fig. 1 shows the performance results of the proposed
method.

Table 2 Details description of dataset used in the experiment

Data sets Features Instances Classes

Molecular biology 57 106 2
(Promoter gene sequences)

Connect 4 42 67557 3

Soybean(Small) 35 47 4

Zoo 17 101 7

Balloon 4 16 2

Mushroom 22 8124 2

Lenses 4 24 3

Fictional 4 14 2

Fig. 1 Number of features selected by the proposed method

The proposed method is fully based on the probabilities
(Bayes′ theorem). The main idea in the proposed method is
finding the dependency between the attributes in deciding
the class attribute value, and also the probabilities will de-
cide the dependency between a set of attributes. Therefore,
the proposed method removes the dependent attributes and
identifies the perfect attributes which are sufficient for the
classification of the datasets and also improve the classifi-
cation accuracy.

From Table 3, the other existing feature selection algo-
rithms (InfoGain attribute eval, GainRatio attribute eval,
OneR attribute eval, ChiSquared attribute eval) suggest
that all the attributes are important for the classification
of datasets. Because of that, the classification accuracy re-
mains constant for naive Bayes (NB) classifier as shown in
Table 4. We conclude that the attributes selected by the
proposed method are perfect in the classification of various
datasets.

We infer from Table 4 that for the promoter, connect 4,
zoo, mushroom, and fictional datasets, the attribute reduc-
tion by Bayes′ theorem shows superior results over the origi-
nal datasets with the initial number of attributes. However,
for other datasets small soybean, balloon, and lenses, the
classification accuracy is maintained and it shows that only
the specified attributes by our novel method is sufficient for
the classification.

From Table 3, it is also clear that feature selection by
Bayes′ theorem achieves the highest level of dimensionality
reduction by selecting a fewer number of features.

Table 3 Number of selected features for each feature selection algorithm

Data Bayes′ Wrapper Consistency Info- Gain-
OneR

Chi- Principal Classifier

sets theorem subset subset Gain Ratio Squared components subset

Molecular biology 16 1 4 57 57 57 57 57 1
(promoter)

Connect 4 13 1 19 42 42 42 42 42 1

Soybean 25 1 6 35 35 35 35 20 1

Zoo 13 1 5 17 17 17 17 15 1

Balloon 2 3 3 4 4 4 4 4 1

Mushroom 21 1 9 22 22 22 22 22 1

Lenses 4 1 3 4 4 4 4 4 1

Fictional 3 3 3 4 4 4 4 4 3

Table 4 Accuracy of naive Bayes on selected features for each feature selection algorithm

Classification accuracy (%)

Data sets Full Bayes′ Wrapper Consistency Info- Gain-
OneR

Chi- Principal Classifier

set theorem subset subset Gain Ratio Squared components subset

Molecular biology 90.56 93.33 75.23 92.38 90.56 90.56 90.56 90.56 90.56 75.23
(Promoter)

Connect 4 55.40 59.43 44.33 55.09 55.40 55.40 55.40 55.40 55.40 44.33

Soybean 100.00 100.00 57.44 97.87 100.00 100.00 100.00 100.00 97.87 57.44

Zoo 93.06 99.00 54.45 94.05 93.06 93.06 93.06 93.06 92.07 54.45

Balloon 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 78.54

Mushroom 93.83 94.25 50.35 93.56 93.83 93.83 93.83 93.83 93.83 50.35

Lenses 95.83 95.83 66.66 83.33 95.83 95.83 95.83 95.83 95.83 66.66

Fictional 50.00 70.00 40.00 50.00 50.00 50.00 50.00 50.00 50.00 40.00

Average 84.835 88.99 61.08 83.285 84.835 84.835 84.835 84.835 84.445 58.375
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In Table 5, the running time over different datasets
with the proposed feature selection using Bayes′ theorem
is given. We found that the average time taken for at-
tribute reduction with Bayes′ theorem is much lower than
the other traditional algorithms average. We can also ob-
serve that for the proposed method, the running times over
different datasets are consistent, which verifies the proposed
method′s superior computational efficiency.

Table 5 Running time of the proposed method

Data sets Bayes′ theorem

Molecular biology (promoter) 20ms

Connect 4 980ms

Soybean 13ms

Zoo 17ms

Balloon 5ms

Mushroom 170ms

Lenses 8ms

Fictional 5ms

Average 152.25ms

Table 4 and Fig. 2 show the learning accuracy of NB clas-
sifier on different feature sets. From the averaged accuracy
over all datasets, we observe that attribute reduction by
Bayes′ theorem improves the accuracy of the NB classifier.
For the promoter, connect 4, zoo, mushroom, and fictional
datasets, the novel approach “attribute reduction by Bayes′

theorem” shows superior results over the feature selection
algorithms (wrapper subset eval, consistency subset eval,
InfoGain attribute eval, GainRatio attribute eval, OneR
attribute eval, ChiSquared attributeb eval, principal com-
ponents, classifier subset eval) (see Fig. 2). However, for
the balloon dataset, the classification accuracy remains the
same as that of the existing feature selection methods. For
the small soybean dataset, attribute reduction by Bayes′

theorem shows superior results over the feature selection
algorithms (wrapper subset eval, consistency subset eval,
principal components, and classifier subset eval). How-
ever, the classification accuracy remains constant in com-
parison with the other feature selection methods (InfoGain
attribute eval, GainRatio attribute eval, OneR attribute
eval, ChiSquared attribute eval). For the lenses data set, at-
tribute reduction by Bayes′ theorem shows superior results
over the feature selection algorithms wrapper subset eval,
consistency subset eval, and classifier subset eval. How-
ever, the classification accuracy remains constant in com-
parison with the other feature selection methods (InfoGain
attribute eval, GainRatio attribute eval, OneR attribute
eval, principal components, and ChiSquared attribute eval).

It is important that when we calculate the average value
of accuracy for each reduction algorithm, our proposed al-
gorithm gives a higher value than others. We conclude that
after “attribute reduction by Bayes′ theorem” is applied to
the original data set, the classification accuracy either in-
creases or remains the same, showing that only the specified
attributes by the new method are sufficient for classifica-
tion. From Table 6 and Fig. 3, we can observe that running
support vector machine (SVM) with selected features is sig-
nificantly faster than SVM with original features. Thus, we
conclude that both the factors “classification accuracy” and
“running time” are taken, and the “attribute reduction by
Bayes′ theorem” shows superior results over the existing
feature selection methods.

Fig. 2 Effect of the proposed feature selection method on naive

Bayes′ classifier performance

Fig. 3 Time comparison of SVM classifiers

Table 6 Running time of SVM on selected features for each feature selection algorithm

Running time (ms)

Data sets
Full Bayes′ Wrapper Consistency Info- Gain-

OneR
Chi- Principal Classifier

set theorem subset subset Gain Ratio Squared components subset

Molecular biology 670 580 5900 2590 670 670 670 670 670 5900

(Promoter)

Connect 4 1060 700 830 3880 1060 1060 1060 1060 1060 830

Soybean 1330 1200 1580 1080 1330 1330 1330 1330 1630 1580

Zoo 3390 2272 4780 4030 3390 3390 3390 3390 4740 4780

Balloon 330 220 170 170 330 330 330 330 330 170

Mushroom 1030 920 360 6380 1030 1030 1030 1030 1030 360

Lenses 860 860 610 890 860 860 860 860 860 610

Fictional 330 190 170 220 330 330 330 330 330 170
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We can see the learning accuracy of ID3, C4.5, NB, SVM,
and neural network (NN), respectively on different feature
sets. From the averaged accuracy over all datasets, we ob-
serve that in general, attribute reduction by Bayes′ theorem
improves the accuracy of NB, ID3, and NN. From individ-
ual accuracy values, we also observe that for most of the
datasets, attribute reduction by Bayes′ theorem can main-
tain or even increase the accuracy. The above experimental
results suggest that Bayes′ theorem is practical for feature
selection for classification of high dimensional data. It can
efficiently achieve a high degree of dimensionality reduc-
tion and enhance classification accuracy with predominant
features.

6 Conclusions

This paper proposes a feature selection algorithm based
on Bayes′ theorem. The algorithm can remove redundancy
from the original dataset. The main idea provided is to
find the dependent attributes and remove the redundant
ones among them. The technology to obtain the depen-
dency needed is based on Bayes′ theorem. A new attribute
reduction algorithm of using Bayes′ theorem is implemented
and evaluated through extensive experiments via compar-
ison with related attribute reduction algorithms. In this
paper, we consider the task of feature selection and inves-
tigate the performance of nine feature selection algorithms.

Our findings can be summarized as follows:
1) In feature selection approach, we have shown that

Bayes′ theorem is a promising approach for automatic fea-
ture selection. It outperforms most existing algorithms in
terms of number of selected features, classification accu-
racy, and running time. Well-established algorithms, such
as wrapper subset eval, consistency subset eval, InfoGain
attribute eval, GainRatio attribute eval, OneR attribute
eval, ChiSquared attribute eval, principal components, clas-
sifier subset eval, are also more complex than Bayes feature
selection. Bayes′ theorem based feature selection runs very
efficiently on large datasets, which makes it very attractive
for feature selection in high dimensional data.

2) We have implemented a new feature selector using
Bayes′ theorem and found that it performs better than
the popular and computationally expensive traditional al-
gorithms.

3) We compared the performance of a number of algo-
rithms on the UCI machine learning repository datasets.

Appendix

Tables A1–A5 in Appendix show the accuracy of ID3,
J48, SVM, and NN on selected features for each feature se-
lection algorithm and time taken by ID3, J48, NB, and NN
on selected features.

Table A1 Accuracy of ID3 on selected features for each feature selection algorithm

Classification accuracy (%)

Data sets
Full Bayes′ Wrapper Consistency Info- Gain-

OneR
Chi- Principal Classifier

set theorem subset subset Gain Ratio Squared components subset

Molecular biology 76.41 77.35 75.33 76.41 76.41 76.41 76.41 76.41 76.41 75.23

(Promoter)

Connect 4 59.11 72.95 44.33 59.11 59.11 59.11 59.11 59.11 59.11 44.33

Soybean 95.94 100.00 57.44 87.23 95.74 95.74 95.74 95.74 95.74 57.44

Zoo 98.01 99.00 54.45 95.04 98.01 98.01 98.01 98.01 98.01 54.44

Balloon 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 78.54

Mushroom 99.79 100.00 97.38 99.79 99.79 99.79 99.79 99.79 99.79 97.38

Lenses 100.00 100.00 66.66 83.33 100.00 100.00 100.00 100.00 100.00 66.66

Fictional 40.00 70.00 30.00 50.00 40.00 40.00 40.00 40.00 40.00 30.00

Average 83.66 89.91 65.70 81.36 83.63 83.63 83.63 83.63 83.63 63.00

Table A2 Accuracy of J48 on selected features for each feature selection algorithm

Classification accuracy (%)

Data sets
Full Bayes′ Wrapper Consistency Info- Gain-

OneR
Chi- Principal Classifier

set theorem subset subset Gain Ratio Squared components subset

Molecular biology 81.13 83.80 75.23 63.80 81.13 81.13 81.13 81.13 81.13 81.13

(Promoter)

Connect4 66.03 66.98 44.33 62.01 66.03 66.03 66.03 66.03 66.03 44.33

Soybean 97.87 100.00 57.44 95.74 97.87 97.87 97.87 97.87 95.74 57.44

Zoo 92.07 99.00 54.45 91.08 92.07 92.07 92.07 92.07 92.07 54.45

Balloon 100 100.00 100 100 100 100 100 100 100 78.54

Mushroom 99.89 100.00 97.38 99.58 99.89 99.89 99.89 99.89 99.89 97.38

Lenses 91.66 91.66 66.66 83.33 91.66 91.66 91.66 91.66 91.66 66.66

Fictional 20.00 20.00 30 30 20 20 20 20 20 30

Average 81.08 82.68 65.69 78.19 81.08 81.08 81.08 81.08 80.70 63.74
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Table A3 Accuracy of SVM on selected features for each feature selection algorithm

Classification accuracy (%)

Data sets
Full Bayes′ Wrapper Consistency Info- Gain-

OneR
Chi- Principal Classifier

set theorem subset subset Gain Ratio Squared components subset

Promoter 93.39 93.39 78.09 85.71 93.39 93.39 93.39 93.39 93.39 78.09

Connect4 62.01 63.83 44.33 60.75 62.01 62.01 62.01 62.01 62.01 44.33

Soybean 100 100 57.44 97.87 100 100 100 100 97.87 57.44

Zoo 96.03 97.02 54.44 95.04 96.03 96.03 96.03 96.03 96.03 54.44

Balloon 100 100 100 100 100 100 100 100 100 78.54

Mushroom 99.89 100 97.38 99.58 99.89 99.89 99.89 99.89 99.89 97.38

Lenses 83.33 83.33 66.66 70.83 83.33 83.33 83.33 83.33 83.33 66.66

Fictional 100 92 30 60.00 100 100 100 100 100 30

Average 91.83 91.20 66.04 83.72 91.83 91.83 91.83 91.83 91.57 63.37

Table A4 Accuracy of NN on selected features for each feature selection algorithm

Classification accuracy (%)

Data sets
Full Bayes′ Wrapper Consistency Info- Gain-

OneR
Chi- Principal Classifier

set theorem subset subset Gain Ratio Squared components subset

Promoter 100 100 80 100 100 100 100 100 100 80

Connect 4 69.37 72.94 44.65 69.37 69.37 69.37 69.37 69.37 69.37 44.65

Soybean 100 100 57.44 100 100 100 100 100 100 57.44

Zoo 100 100 54.45 99.00 100 100 100 100 100 54.45

Balloon 100 100 100 100 100 100 100 100 100 78.54

Mushroom 100 100 97.38 100 100 100 100 100 100 97.38

Lenses 100 100 66.66 91.66 100 100 100 100 100 66.66

Fictional 60 80 40 70 60 60 60 60 60 40

Average 91.17 94.12 67.57 91.25 91.17 91.17 91.17 91.171 91.17 64.89

Table A5 Running time on selected features for each

classification algorithm

Running time (ms)

ID3 J48 NB NN

Full set 220 260 50 59249

Bayes′ theorem 80 100 5 41390

Wrapper subset 40 230 20 6400

Consistency subset 100 70 160 87830

InfoGain 220 260 50 59249

GainRatio 220 280 50 59249

OneR 220 260 50 59249

ChiSquared 220 260 50 59249

Principal components 210 190 70 54109

Classifier subset 40 230 20 6400
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