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Abstract: To alleviate the influence of gas compressibility on the process performance of time-pressure dispensing for electronics
encapsulation, a predictive model is developed based on power-law fluid to estimate the encapsulant amount dispensed. Based on the
simple and effective model, a run by run (RbR) supervisory control scheme is delivered to compensate the variation resulting from gas
volume change in the syringe. Both simulation and experiment have shown that the dispensing consistency has been greatly improved
with the model-based RbR control strategy developed in this paper.
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1 Introduction

Fluid dispensing is a critical process in electronics encap-
sulation. For example, before reflowing or flux, the encap-
sulant should be pasted on the substrate by dispensing[1], as
shown in Fig. 1, and in flip-chip encapsulation process, some
encapsulant with high viscosity should be first dispensed on
a substrate such as a printed circuit board (PCB), forming
a dam or border surrounding the die and wires, and then
another encapsulant with a low viscosity is dispensed to fill
the inside of the dam[2] (see Fig. 2).

(a) Die encapsulation (b) Underfill encapsulation

Fig. 1 Applications of dispensing in the electronics encapsula-

tion

In these encapsulation processes, the consistency of the
encapsulant amount dispensed is very critical, otherwise
short circuit, component breaking off, or satellitic dots pol-
luting the solder plate would happen. In order to get a
good dispensing performance, one fundamental requirement
is that the flow rate of the encapsulant dispensed should be
controlled to be consistent over the dispensing process so
that the amount of encapsulant dispensed can be accurately
manipulated.
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Fig. 2 Schematic of a typical time–pressure dispensing system

The time-pressure dispensing is the most widely used
due to its low cost, simple operation, ease of maintenance,
and flexibility for different applications[3]. Fig. 2 shows
the schematic of a typical time-pressure dispensing system.
When the valve is opened, the compressed air in the syringe
squeezes the fluid (such as resin, adhesive, and encapsu-
lant) out to a substrate. Unfortunately, the time-pressure
dispensing process has proven to be the most difficult to
model and control because the performance can be affected
by many variables. One of the main variables is the air
compressibility which can significantly affect the amount
of fluid dispensed, especially when dispensing a minute
amount with a short duration of pressure pulse (called dis-
pensing cycle, typically less than 200 ms). Consequently, as
the air volume in the syringe increases with the dispens-
ing process proceeding, the amount of fluid dispensed can
change dramatically under the action of an identical pres-
sure pulse[3]. The inconsistency in the amount dispensed
under the identical pressure pulses is considered as a seri-
ous problem in the time-pressure dispensing process[4, 5].

To resolve this problem, several models have been de-
veloped and evaluated, but most of them are numeric
models[6], experiential knowledge-based models[7] and neu-
ral network models[8], which are difficult to be applied in
practice. Furthermore, the adhesive used for dispensing is
often epoxy which belongs to the non-Newtonian fluid[9]

and difficult to model. So far, the practical research has fo-
cused on the analytical approach of modeling the dispenser
as a pipe flow[10−12] by assuming the adhesive as a New-
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tonian fluid. However, the results for the Newtonian fluid
usually cannot be applied to the non-Newtonian fluid[6]. On
the other hand, the control of the time-pressure dispens-
ing has been studied by using different technologies and
methods, such as extra sensing technology[13], knowledge-
based experience[7], and SPC method[14]. Recently, a sim-
ple model-based iterative off-line control method was pro-
posed by regulating the air pressure[11]. It is noted that
almost all the above control methods employed pressure to
compensate the process variations. Practically, they are dif-
ficult to realize because the pressure may not be an efficient
control variable for its compressibility and slow response.

In this research, a model-based run by run (RbR) con-
trol strategy is presented to control the dispensing process.
First, a model for predicting the amount of fluid dispensed is
delivered from the typical non-Newtonian power-law fluid.
Finally, an RbR controller based on exponentially weighted
moving average (EWMA) supervising is developed to alle-
viate the variation resulting from the air compress. Unlike
the existing dispensing control method which employs pres-
sure as controllable variable[10, 13], in this paper, we choose
dispensing time as the control variable, which makes the
control process more feasible and effective. Both simula-
tion and real experiment have shown that the dispensing
consistency has been greatly improved.

2 Predictive model development

In electronics encapsulation, the fluid amount dispensed
in a cycle is very small compared with the fluid volume left
in the syringe, and it is appropriate to only consider the
dynamics of the fluid flowing in the needle, which can be
seen as a small diameter rigid pipe as show in Fig. 3.

Fig. 3 Structure of the dispenser and the flow in a vertical pipe

For a fully developed pipe flow, it can be known that
the pressure drop through the pipe ΔP ∗ = Ps − Pe and
gravitational body force ρgz is balanced by the wall friction
Fw which relates the wall shear stress τw. Then, the force
balance equation is obtained for the control volume in the
cylinder with length Ln:

2πRτwLn = πR2ΔP = πR2(ΔP ∗ +ρgLn) (1)

τw =
RΔP

2Ln
(2)

where τw and R are the shear stress at the wall and inner
radius of the needle, respectively. By the same method, the

inner shear stress τ is derived at the arbitrary point in the
needle with radius r < R as

τ =
rΔP

2L
. (3)

Then
τ

τw
=

r

R
. (4)

The shear rate γ̇ is described as[6]

γ̇ = −duz

dr
(5)

where uz is the flow velocity through the pipe in the
radiusr. In electronics encapsulation, the generalized power
law equation is the most widely used to describe the rela-
tion between the fluid dynamic viscosity η and shear rate γ̇
which is given by[15]

η(γ̇) = kγ̇N−1 (6)

where k is the fluid apparent viscosity and N is the mea-
surement of the rheology with N �= 1, or else it will be a
Newtonian fluid. Substituting (5) and (6) into (4) yields

−duz = τw
r

R

dr

η
(7)

τ = kγ̇ = k

(
−duz

dr

)N

. (8)

The boundary conditions of uz satisfy uz = 0|r=R and
uz < ∞|r=0, thus from (8), we have

uz =
N

N + 1

(
ΔP

2Lnk

) 1
N (

R
N+1

N − r
N+1

N

)
. (9)

The flow rate through the needle is

Q =

∫ R

0

πr2uzdr =
NπR3

3N + 1

(
R

2Lnk

) 1
N

ΔP
1
N . (10)

It is noted that the coefficient of ΔP is related to the struc-
ture of the syringe and the fluid dynamic. Let

K =
NπR3

3N + 1

(
R

2Lnk

) 1
N

. (11)

Equation (10) can be simplified to

Q = KΔP
1
N . (12)

The fluid volume dispensed during cycle T0 is

V =

∫ T0

0

Qdt = K

∫ T0

0

ΔP
1
N dt. (13)

Equation (13) is the predictive dispensing model. It can
be seen that only ΔP and T0 can be used to modulate
the dispensing volume. Since ΔP can be measured, for
convenience, (13) is presented as

V = A(t)t (14)

where A(t) is an alterable coefficient about dispensing time
t. For a given t and resource pressure P0, ΔP (t) can be
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measured by a pressure sensor, and parameters K and N
can be identified, which will be discussed in the following
section. Thus, A(t) is a constant.

Equations (13) and (14) can predict the fluid amount dis-
pensed while the air volume in the syringe dose not change
severely. However, with the dispensing process proceeding,
the fluid left in the syringe decreases and the air amount
increases, the influence of air compressibility becomes more
severe, which leads to (13) having more serious to mismatch
with the real process. Since it is a slow drift process, this
drift can be compensated by a proper control strategy, such
as the RbR controller discussed in the next section.

3 RbR controller design

3.1 Discussions

From the control point of view, the dispensing process
is an RbR batch process as shown in Fig. 4. Though the
pressure response inside the syringe is very fast during each
dispensing cycle, the whole dispensing is slow in terms of
the dispensed volume. Two problems are discussed below:

1) Direct pressure control during the dispensing cycle
is impossible due to the short dispensing cycle with
T0 = [50 ms, 80 ms] in the high-precision dispensing
and the slow reaction of the pneumatic control system
(hardware limitation). Practically, the only one possi-
ble way to control the dispensed volume is to control
the pressure valve open time td, i.e., the rising period
of the pressure curve, but T0 is not changed once de-
cided before real dispensing to keep a fast dispensing
frequency.

2) It could be possible to design a complex control algo-
rithm in theory, however, it is impossible to apply it
in practice due to the physical limitation. First, the
resolution td is very coarse due to the hardware limi-
tation of the value. An elegant control action cannot
show its advantages under the coarse actuation. Sec-
ond, the dispensing system has to share the computa-
tion resources with other parallel units, such as vision
system, x − y table motion, bond head motion, etc.
Only a few milliseconds are available for the dispens-
ing computation.

Fig. 4 Pressure variation of an RbR dispensing process

Since it is a slow process between runs, an RbR control
would be suitable at this supervisory level. To alleviate the
influence of system repetitiveness, the sample dispensing
is required for the model calibration (parameter identifica-
tion) before the real dispensing. The valve open time td can

be easily and correctly determined at the beginning of the
dispensing, and only needs to be fine-tuned when the fluid
amount left in the syringe gradually changes.

3.2 RbR controller design

The most widely used RbR controller is based on an
EWMA scheme[16]. The EWMA control assumes a linear
process input-output relationship, and also assumes that
there exists slow drift or persistent change in the model in-
tercept part. It then achieves an estimation of process state,
and the recipe changes necessarily to keep the process on
target.

Because modulating dispensing pressure is not practical,
the pressure from the compressor is always fixed (but its
response in the syringe is dynamic). Considering the dis-
turbance resulting from the tailing effect, the inconsistent
distance between the needle and the substrate. An RbR dis-
pensing controller is developed as shown in Fig. 5, in which
P0 is the pressure of gas resource. For convenience, we as-
sume that the fluid amount dispensed in the n-th cycle is
as

V (n) = αA(t(n))t(n) + ν(n) (15)

where t(n) and ν(n) are the valve opening time and dis-
turbance of n-th cycle, respectively, α is the gain between
the controller input t and the measured output V [17]. It is
assumed that the disturbance can be modeled as integrated
moving average, IMA (1, 1), time series of the form

ν(n) − ν(n − 1) = ε(n) − θε(n − 1) (16)

where ε is uncorrelated noise with variance, θ is a weighted
coefficient. The function of the EWMA filter is to esti-
mate the disturbance from the process data. The minimum
mean-squared error (MMSE) one-step-ahead estimate of an
IMA (1, 1) process is[18]

ν̂(n + 1) = θν̂(n) + (1 − θ)ε(n). (17)

Fig. 5 RbR control process

The result in (17) shows that the MMSE estimate for the
disturbance is a weighted average of the current measured
disturbance and the previous estimate of the disturbance.
In practice, the value of θ is unknown. Thus, a tuning
parameter ω is chosen to govern how quickly the dispensing
process data are discounted. When ω is chosen to be close
to one, the estimate of ν is updated very slowly, and when
ω is zero, only the most recent measurement is considered
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when estimating ν. It follows that the updating expression
for the disturbance estimate is analogous to (17):

ν̂(n + 1) = ων̂(n) + (1 − ω) (V (n) − βt(n)) (18)

where β is the estimate of the dispensing process gain which
is assumed for the moment to be equivalent to the actual
process gain α.

After the EWMA filter estimates the dispensing process
offset, the recipe of the following run is determined through
a simple model inversion:

t(n + 1) =
Vd − ν̂(n + 1)

β
(19)

where Vd is the desired fluid amount dispensed.

4 Simulation and experiment

4.1 Model validation

To consider the disturbance from the non-Newtonian
fluid variation, before real dispensing, parameters K and
N of (13) have to be identified at a pair of fluid heights,
which is called “operating conditions” in this paper. In
the syringe, for gas volume which is slowly increasing dur-
ing dispensing, it is apparent that the parameters identified
at the selected operating condition may not fit the other
fluid levels very well. Thus, a proper choice of the operat-
ing condition will be critical to the parameter estimation.
To decide the operating conditions, choosing some typical
pairs of syringe fluid heights, such as (100%, 90%), (100%,
80%), (80%, 90%), etc. to numerically simulate by using
the software Fluent 6.2, the overall performance of (13) can
be compared in terms of the mean of the approximation er-
rors which achieves at all different fluid heights as shown in
Fig. 6. This sensitivity analysis demonstrates that if both
of the fluid heights are between 40% and 100% level, the
identified model will have the minimum mean error on all
the other fluid levels. For convenience, we can easily choose
one height as the full level and the other one as 50% level
for model identification. The result is shown in Table 1,
in which K and N are identified by the Newton iteration
method, and VN and VM are the numerical volume and the
predicted volume of the model, respectively.

Fig. 6 Averaged error (Ea) map of dispensed volume

Table 1 Volume comparison come for (13) (parameters from

two levels, 50% and 100%), N = 0.49596, K = 8.2771436 E-7

Level (%) VN (mm3) VM (mm3) ε(%)

100 0.2092 0.2092 0.0018

90 0.1820 0.1818 0.080

80 0.1655 0.1656 0.10

70 0.1513 0.1513 0.029

60 0.1401 0.1402 0.057

50 0.1373 0.1373 0.0018

40 0.1262 0.1262 0.059

30 0.1243 0.1244 0.10

20 0.1191 0.1180 0.95

From Table 1, it can be seen that the predictive model has
an excellent precision, but the error increases with the de-
creasing fluid level because the air compressibility becomes
more severe.

4.2 RbR control

The predictive model and RbR controller derived in the
previous sections are validated in this part by experiments.
The experiment system includes an air supply controller
provided by ASM Assembly Automation Ltd. HK, a com-
mand valve provided by SMC, and a transmission line with
the internal diameter of 4mm and length of 3.2 m. In or-
der to get the instantaneous ΔP , a pressure transducer is
connected to the line near the syringe chamber to sample
its pressure with interval Δt = 0.2 ms (here we consider the
value of ρgz according to (1)). To reduce the random error,
the total amount of the fluid dispensed in ten cycles is mea-
sured by a vision system[4], and then the average is taken
to represent the fluid amount dispensed of one cycle. Fur-
thermore, silicon oil is selected as the dispensing material
to reduce the error due to the time dependence associated
with non-Newtonian fluids.

After calibrating the parameters of (13), the RbR con-
trol strategy is employed and used to compare with the
proportional-integral (PI) controller, which is one of the
most common controller in industry practice. The result is
shown in Table 2. From Table 2, it can be seen that the dis-
pensing performance is obviously improved compared with
the PI controller and the open loop dispensing.

To measure the degree of the improvement, the standard
deviationσand variation υar are used, which are given by

σ =

√√√√√
(

m∑
i=1

(Vi − V̄ )2
)

m
(20)

and

υar =
(max {Vi} − min {Vi})

V̄
(21)

where i = 1, 2, 3, · · · , m, V̄ is the mean of the sample Vj

and m is the sample number (m = 10 in this paper, i.e.,
ten fluid levels). From (20) and (21), we can find that
standard deviation is the consistency degree of the total
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samplesand the variation gives prominence to the maximal
wave, which is an important index to evaluate dispensing
quality. The result is shown in Table 3. It can be seen that
the mean of the actual dispensing amounts with the control
strategy delivered in this paper is closely approaching to the
desired amounts. The slight difference likely results from
the experimental uncertainties, including the measurement
noise, the limited resolution of td, etc. It is also observed
that the deviation is significantly reduced from 0.25% to
0.064% and the maximal deviation from 23.4% to 5.59%.
The results show that the RbR controller can improve the
dispensing consistency effectively.

Table 2 Control results with different control strategies

Measured Desired Measured dot amount (mg)

dot amount dot amount Without PI EWMA

(mg) (mg) control control control

10 0.0356 0.0358 0.0358

9 0.0348 0.0366 0.0358

8 0.0336 0.0352 0.0364

7 0.0324 0.0356 0.0356

6
0.036

0.032 0.0368 0.0358

5 0.0308 0.0352 0.036

4 0.0302 0.0346 0.0356

3 0.03 0.0342 0.0348

2 0.0288 0.0336 0.0362

1 0.0282 0.0334 0.0356

Table 3 Mean, standard deviations and variations of the

measured fluid amount dispensed with different control

strategies

Desired dot
V̄ (mg) σ (%) υar (%)

amount (mg)

Without
0.0316 0.25 23.4

control

PI
0.036 0.0351 0.11 9.687

control

EWMA
0.0358 0.064 5.59

control

5 Conclusions

A simple model is developed for the fluid amount dis-
pensed estimation. After properly selecting parameters, the
models can very well estimate the fluid amount at all fluid
levels. With the properly identified parameters, the influ-

ence of the air compressity can be well compensated via an
RbR supervisory control scheme. Both simulation and ex-
periment show that the better performance is achieved by
using the proposed RbR dispensing control.
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