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Abstract: A new on-line fault detection and isolation (FDI) scheme proposed for engines using an adaptive neural network classifier
is evaluated for a wide range of operational modes to check the robustness of the scheme in this paper. The neural classifier is
adaptive to cope with the significant parameter uncertainty, disturbances, and environment changes. The developed scheme is capable
of diagnosing faults in on-line mode and can be directly implemented in an on-board diagnosis system (hardware). The robustness of
the FDI for the closed-loop system with crankshaft speed feedback is investigated by testing it for a wide range of operational modes
including robustness against fixed and sinusoidal throttle angle inputs, change in load, change in an engine parameter, and all these
changes occurring at the same time. The evaluations are performed using a mean value engine model (MVEM), which is a widely used
benchmark model for engine control system and FDI system design. The simulation results confirm the robustness of the proposed
method for various uncertainties and disturbances.
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1 Introduction

An automotive engine is a complex machine which is con-
trolled and monitored by a sophisticated electronic system
called an electronic control unit (ECU). The need of an ad-
vanced ECU arose due to legislative requirements for pol-
lution control. All petrol cars sold within Europe since
January 1, 2001, and diesel cars manufactured since 2003,
must have on-board diagnostic systems to monitor engine
emissions. These systems were introduced in line with Eu-
ropean Directive 98/69/EC[1] to monitor and reduce emis-
sions from cars. All such cars must also have a standard
European on-board diagnostics (EOBD) socket that pro-
vides access to this system. EOBD systems monitor and
store information from sensors throughout the car, e. g. air
flow sensors and oxygen sensors. Sensor values outside an
acceptable range trigger a diagnostic trouble code (DTC).
New diagnostic tools help in reading and interpreting these
codes, and view the live sensor output. EOBD is the Euro-
pean equivalent of the American on-board diagnostics - II
(OBD-II) standard which applies to cars sold in 1996.

Some engine faults can lead to increase in emissions and
affect fuel efficiency adversely. Some serious faults can even
lead to ceasing of the engine or even an accident and that
is why fault detection, isolation, and accommodation be-
came so important for the automotive industry. There are
a number of fault diagnosis systems in practice, but major
car firms are now looking at neural networks to solve the
demanding engine control and diagnostic requirements[2].
For instance Ford has introduced the Econoline van which
uses a neural net to detect misfire in its V10 engine. Ap-
plications of artificial neural networks (ANNs) to engine
modelling and control have previously been presented by
many researchers[3−6]. Earlier work on fault diagnosis of an
automotive engine based on parity equations derived from
an engine model was presented in [7]. The application of
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data-driven monitoring technique to accurately diagnose air
leakage in the inlet manifold plenum chamber of an auto-
motive engine with a diameter size as small as 2mm can
be found in [8]. A hardware-in-the-loop simulation (HILS)
system was developed and performance of a commercial
electronic stability program (ESP) electronic control unit
(ECU) was evaluated for a virtual vehicle under various
driving conditions[9]. This HILS system can be used in
various applications such as benchmarking, comparison of
commercial ECUs, and detection of fault and malfunction
of ESP ECUs. A Kohonen network-based fault diagnosis
system for fault diagnosis and monitoring of starter motors
was proposed in [10] for fault diagnosis of six different faults
in starter motors which made it possible to diagnose the
faults before they occur by keeping fault records of past oc-
currences. The effectiveness of a non-linear principal com-
ponent analysis based (PCA-based) monitoring scheme was
illustrated for drifting fault in the fuel flow sensor due to a
partial blockage of the intercooler in a Volkswagen TDI 1.9
litre diesel engine in [11]. The pattern recognition and clas-
sification abilities of networks were applied to crankshaft
speed fluctuation data for engine-fault diagnosis, and mul-
tidimensional mapping capabilities were investigated as an
alternative to large lookup-tables and calibration functions
in [12]. A continuous wavelet transform technique for the
fault signal diagnosis in an internal combustion (IC) en-
gine and its cooling system was presented in [13]. A neural
network model-based fault classification system for a non-
linear dynamic process was investigated in [14] and the real
data experiment showed that sensor faults could be detected
and isolated even without a process mathematical model.
An fault detection and isolation (FDI) scheme for abrupt
and incipient faults presented in [15] using online estimators
is a good example of an automated fault-diagnosis method-
ology.

In this paper, two component and two sensor faults with
four different levels of intensities have been investigated as
four typical and practical examples of spark ignition (SI)
engine faults. The faults considered are realistic and have
been considered by previous authors in [16, 17]. The two
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component faults are exhaust gas recycle (EGR) valve stuck
up and gas leakage in the intake manifold. The two sensor
faults are intake manifold pressure and temperature sensor
faults.

A new on-line FDI scheme proposed for engines using
an adaptive neural network classifier in [18] is thoroughly
tested for a wide range of operational modes to check the
robustness of the proposed scheme in this paper. The
classifier system is adaptive to cope with the significant pa-
rameter uncertainty, disturbance, and environment change.
It is capable of on-line fault diagnosis which can be directly
implemented in an on-board diagnosis system (hardware).
During operation, the network classifier learns parameter
changes in the engine due to aging or environment change.
It can also adapt to engine-to-engine differences within a
batch of products. Gaussian radial basis function (RBF)
neural nets are used for this purpose, and both weights
and widths are adapted on-line. Every sample of engine
data is first tested for a fault, and then used to update
the neural network. The proposed approach is applied to
diagnose some simulated faults in an SI engine air path.
It is impracticable for the authors to get real faulty data
from a running engine at a specific time and situation.
Therefore, an engine simulation model is used for fault
simulation. The adaptive algorithm is also compared with
a non-adaptive algorithm. Furthermore, the robustness of
the developed adaptive system is investigated by testing it
for a wide range of operational modes for a real automotive
engine running on a road, i. e., change in speed set-point,
load, and engine parameter. The nobility of this paper con-
sists in the successful demonstration of robustness of the
developed adaptive neural-network-based FDI algorithm.

Notations

t : Time (s).

α : Throttle plate angle (degree).

n : Engine speed (rpm/1000).

ṁf : Engine port fuel mass flow (kg/s).

Ta : Ambient temperature (Kelvin).

pi : Absolute manifold pressure (bar).

Ti : Intake manifold temperature (Kelvin).

ṁat : Air mass flow past throttle plate (kg/s).

ṁap : Air mass flow into intake port (kg/s).

TEGR : EGR temperature (Kelvin).

ṁEGR : EGR mass flow (kg/s).

Vi : Manifold + port passage volume (m3).

R : Gasconstant = 287 × 10−5 kJ/kg/Kelvin.

κ : Ratio of specific heats = 1.4 for air.

I : Crankshaft load inertia (kg·m2).

Pf : Friction power (kW).

Pb : Load power (kW).

λ : Relative value to indicate the air/fuel ratio (λ = 1 corre-
sponds to air/fuel ratio of 14.7).

Pp : Pumping power (kW).

Pp : Fuel lower heating valve (kJ/kg)

Δτd : Injection torque delay time (s).

2 Fault diagnosis method

According to the engine air path dynamics, four vari-
ables are chosen as the network inputs: the throttle angle,
the manifold pressure, the manifold temperature, and the
crankshaft speed. The RBF network, as the fault classifier,
will receive all possible and relevant signals containing fault
information, and has 17 outputs with each indicating one of
the investigated states, one for no-fault and 16 for 16 faults.
The information flow for the fault diagnosis is illustrated in
Fig. 1.

The feedback system in a real automotive is a human el-
ement (driver). The speed is tried to be kept constant by
adjusting the throttle angle. In the model, the human con-
troller is represented by a PID controller. The mean value
engine model (MVEM) receives a controlled throttle angle
input. Component faults are simulated in the model one
by one, and an appropriate level of measurement noise is
added to all input and output measurements. All the four
input and outputs are conditioned and normalised, and fed
to the adaptive classifier. Widths in the hidden nodes and
the weights in the output layer of the RBF network are
adapted to minimise the sum squared error between the
output from the adaptive system and the pre-decided tar-
get output. Gradient descent method is used for the widths
of the RBF network. The width in each hidden layer node
is usually chosen as a constant using the P -nearest rule[19].
The classification is sensitive to the Gaussian local function,
which is mainly characterised by the width. Therefore, a
gradient descent algorithm is derived to on-line adapt the
widths to achieve a minimal objective function given as fol-
lows:

J =

q∑

j=1

e2
j (1)

where ej = yj − ŷj is the j-th classifier output error, and yj

is the j-th training target. The new updated value of the
width can be achieved by the following equation:

ρi(k + 1) = ρi(k) + 4αφi(k)
‖x(k) − ci‖2

ρ3
i (k)

q∑

j=1

ej(k)wij(k)

(2)
where x(k) is the network input vector at iteration k, ci is

Fig. 1 Information flow of the fault diagnosis
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the centre of the i-th activation function, φi(k) is the Gaus-
sian basis activation function, wij(k) is the output layer-
weight element connecting the j-th hidden node to the i-th
output, α is a learning factor and 0 < α < 1. The com-
plete mathematical derivation of the above equation can be
found in [18].

While the fault classifier diagnoses faults on-board, the
classifier is adapted on-line so that the model-plant mis-
match, parameter uncertainty, and especially the time vary-
ing dynamics caused by mechanical wear of components and
environment change can be modelled. In this way, the clas-
sification error and consequently the false alarms will be
greatly reduced. Here the false alarm is the alarm caused
due to noise, parameter uncertainty, or time-varying dy-
namics when actually there is no fault. The on-line adapted
classifier is developed to cope with such situations, which is
not considered by the fixed parameter classifier.

The fault classification and on-line adaptation are imple-
mented as follows. First, the measurements are read into
the electronic control unit (ECU). Then, the data is fed into
the classifier to diagnose faults. After this, the target will be
modified according to whether a fault or several faults are
detected. If a fault is detected, the on-line training target
vector will be changed to the target vector corresponding to
the occurred fault. Then, the measurements and the mod-
ified target are used to update the classifier. In the adap-
tation, the width in each hidden node is adapted using the
gradient descent algorithm in (2) and the centre locations
remain fixed as previously described. This is followed by
adaptation of the weights using the recursive least squares
(RLS) algorithm in [20].

To reduce the effect of peak noise on the fault detection
so as to reduce the false alarm, the mean absolute modelling
error for each classifier output is calculated for the previous
M samples as the residual

rj =
1

M

k∑

i=k−M+1

|yj(i) − ŷj(i)|, j = 1, · · · , q (3)

and a fault is believed to be fired when

rj ≥ rt (4)

where k is the sample instant, rj is the residual, and rt is
the threshold to be designed according to the noise level.

Another point is that a multi-epoch training of the width
in one sample period using the gradient descent method is
employed. It was found that a single iteration updating
with the gradient descent method would not reach the min-
imum if the learning rate is chosen small, while a large
learning rate will cause unstable convergence.

The recursive updating of the widths runs until the fol-
lowing is satisfied.

∣∣∣∣
∂J

∂ρi

∣∣∣∣ ≤ σ, i = 1, · · · , nh (5)

where σ is a pre-specified small positive constant, or a pre-
specified number of iterations is reached. The fault diag-
nosis and classifier adaptation within one sample period is
illustrated in Fig. 2.

Fig. 2 Flow chart of fault diagnosis and classifier updating

3 Engine dynamics and controller de-
sign

3.1 Mean value engine model

An MVEM is chosen for fault simulation as well as test-
ing. A speed feedback loop along with a PID controller is
added to the MVEM in this research as shown in Fig. 3. In
a real automotive, the speed feedback control and accord-
ingly the manipulated variable, throttle angle, is given by
a human element (driver). But here, the fault detection
and evaluation are done when the engine is under closed-
loop speed control to simulate the real-world situation. The
modified MVEM has reference speed as the input and four
outputs: throttle position, intake manifold temperature, in-
take manifold pressure, and crank shaft speed, respectively.

To investigate the feasibility of the developed method
under closed-loop speed control, the dynamics of the mod-
ified and controlled MVEM is introduced. It consists of
three sub-models that describe the intake manifold dynam-
ics including air mass flow, pressure and temperature and
the crankshaft speed. The engine dynamics are explained
briefly in the following sections.

3.2 Manifold filling dynamics

The engine air path is schematically illustrated in Fig. 4.
Its dynamics are briefly presented as follows, and the physi-
cal parameters are defined in the Nomenclature. The details
of the dynamics can be referred in [21].

The manifold filling dynamics in reality is based on an
adiabatic operation rather than isothermal. The manifold
pressure can be represented as

ṗi =
κR

Vi
(−ṁapTi + ṁatTa + ṁEGRTEGR) (6)

where the dot on the top of a variable, such as ṗi, denotes
the first derivative of the variable with respect to time. The
positive terms within brackets show the in-flow of gas and
the negative term shows the outflow of gas from the intake
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Fig. 3 Simulink model of MVEM with crankshaft speed feedback

manifold (see Fig. 4). Using the law of energy conservation,
a state equation which describes the time development of
the intake manifold temperature can be given as

Ṫi =
RTi

piVi
[−ṁap(κ − 1)Ti + ṁat(κTa − Ti)+

ṁEGR(κTEGR − Ti)] . (7)

Fig. 4 Schematic of the air intake and exhaust system of the

engine

3.3 Crank shaft speed dynamics

Applying the law of conservation of rotational energy, the
crankshaft dynamics of an SI engine MVEM are described
by (8).

ṅ = − 1

In
(Pf (pi, n) + Pp(pi, n) + Pb(n)) +

1

In
Hlηi(pi, n, λ)ṁf (t − Δτd) (8)

where I is the scaled moment of inertia of the engine and
its load and the mean injection/torque time delay has been
taken into account with variable Δτd. λ = 1 corresponds to
air/fuel ratio (AFR) of 14.7 for gasoline and 14.5 for diesel.
At λ = 1, we have stoichiometry or the point at which the
most complete combustion takes place. λ gives a measure

of AFR, which is independent of the type of fuel being used.
λ > 1.0 indicates excess air (lean mixture) while λ < 1.0
indicates excess fuel (rich mixture).

3.4 Controller design

A simple closed-loop PID controller is shown in Fig. 5.
The variable e represents the tracking error, the difference
between the desired input value (reference signal) R and
the actual output Y . This error signal e is sent to the PID
controller, and the controller computes both the derivative
and the integral of this error signal. The controller out-
put signal u is equal to the proportional gain Kp times the
magnitude of the error plus the integral gain Ki times the
integral of the error plus the derivative gain Kd times the
derivative of the error,

u(t) = Kpe(t) + Ki

∫
e(t)dt + Kd

de(t)

dt
.

This signal u is input to the MVEM, completing the feed-
back loop fed back to the reference. The well known
Ziegler-Nichols method is used for tuning the PID con-
troller. Initially, Ki and Kd gains are set to zero. The
proportional gain is increased until it reaches the critical-
gain Kc at which the output of the loop starts to oscillate.
Kc and the oscillation period Pc are used to set the gains as
Kp = 0.45 Kc and Ki = 1.2 Kp/Pc. The desired output is
achieved without the use of derivative gain. Therefore, the
derivative gain is kept zero to keep the controller as simple
as possible.

Fig. 5 Closed-loop PID controller

A set of five random values in the range of 2 to 4 krpm
are applied as reference signals. Each random speed is sus-
tained for 6 seconds before the speed signal is changed to
the next value because the outputs of the simulation reach
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their steady state values in six seconds. The data is sam-
pled every 0.5 s, and therefore 12 data points are collected
in every 6 s. The output response of the crankshaft speed
for no fault case for five different reference signals is shown
in Fig. 6. The output crankshaft speed follows the input ref-
erence speed without much overshoot, delay time, and zero
steady-state error. The chosen PID (Kp = 10, Ki = 10, and
Kd = 0) settings give an acceptable level of performance of
the controller for further experimentation.

Fig. 6 No fault outputs for five random speed reference signals

4 Fault diagnosis

4.1 Simulating faults

The sensor faults can occur due to two reasons:
1) Ageing and wear & tear of the mechanical parts of the

deflection meter;
2) Electrical fault, e. g. short circuit or open circuit fault

in the signal cable.
The electrical faults are easy to detect because open cir-

cuit and short circuit faults will cause a full deflection or
zero deflection in the meter, respectively. On the contrary,
the ageing and mechanical faults cause an incorrect meter
reading, i. e., over-reading or under-reading of the actual
values. Both cases of under-reading and over-reading of the
temperature or pressure measurements are considered here.
Air leakage in the air path can happen due to the following
reasons:

1) Missing gas caps;
2) Loose gas caps;
3) Leaks in gas caps or vapour vent lines;
4) Disconnected purge lines[22].
Current OBD regulations require monitoring of any leaks

(for 2003 year model and after) that exceed 0.02 inch in di-
ameter (0.5 mm approximately). It is not practical to create
some component faults in a running engine in real life, such
as air leakage in the manifold or a stuck EGR valve. There-
fore, the faults are simulated in a Matlab engine model in
this research. The air leakage is simulated in the modified
mean value engine model as a percentage of the total air
mass flow in the intake manifold explained later. The EGR
valve can be stuck up in any position where there is a fail-
ure of the EGR valve positioning control. This will lead to
a fixed percentage EGR flow through the valve. There can
be many reasons for the failure of the EGR valve position-
ing system, which have not been investigated in this paper.
The investigation is focused on the detection and isolation
of the fault and its intensity, not on pin-pointing the actual
component failure of the EGR system:

1) EGR open circuit fault,
2) EGR vent solenoid fault,
3) EGR step motor 1 fault,
4) EGR step motor 2 fault,
5) EGR vacuum regulator fault,
6) EGR boost solenoid control fault etc.

Details of the simulation of the faults are described next.
No Fault: For no fault situation, EGR is assumed to

be 1/6 (16.67%) of the total air mass flow in the intake
manifold. Practically, the EGR in a car can be as high as
20% of the total air mass flow. It is also assumed that all
the sensors are working well and there is no leakage in the
intake manifold.

Air Leakage Fault: To collect the engine data sub-
jected to the air leakage fault, (6) is modified

Ṗi =
κR

Vi
(−ṁapTi + ṁatTa + ṁEGRTEGR − Δl) (9)

where Δl is used to simulate the leakage from the air man-
ifold, which is subtracted to increase the air outflow from
the intake manifold. The air leakage levels are simulated as
5%, 10%, 15%, and 20% of the total air intake in the intake
manifold, respectively.

EGR valve faults: The normal value of EGR is about
16.67% of the total air mass flow, which is a realistic value
of EGR feedback chosen for the experiments. The value of
ṁEGR for different fault intensities is regulated as 0%, 25%,
50%, 75%, and 100% of the total EGR air mass flow, where
0% EGR air mass flow corresponds to the EGR valve stuck
up completely and 100% corresponds to full EGR air mass
flow, i. e., no fault condition.

Temperature/pressure sensor faults: Temperature
and pressure sensor faults are considered in four different
intensities: Sensors over-reading 20% or 10% and sensors
under-reading 10% or 20% of the normal value. The faulty
data for the sensors is generated using multiplying factors
(MFs) of 1.2, 1.1, 0.9, and 0.8 for over or under reading,
respectively, as shown in Table 1.

Table 1 All the 17 states and multiplying factors (MFs)

Number Fault names MFs

1 No fault (NF)

2 5% leakage in intake manifold

3 10% leakage in intake manifold

4 15% leakage in intake manifold

5 20% leakage in intake manifold

6 EGR valve stuck 25% closed

7 EGR valve stuck 50% closed

8 EGR valve stuck 75% closed

9 EGR valve stuck 100% closed

10 Temperature sensor 20% over reading MF=1.2

11 Temperature sensor 10% over reading MF=1.1

12 Temperature sensor 10% under reading MF=0.9

13 Temperature sensor 20% under reading MF=0.8

14 Pressure sensor 10% over reading MF=1.2

15 Pressure sensor 20% over reading MF=1.1

16 Pressure sensor 20% under reading MF=0.9

17 Pressure sensor 10% under reading MF=0.8

4.2 Network training

Two RBF networks are used for fault classification, with
one for non-adaptive classifier and the other for adaptive
classifier. Both networks have the same structure and will
be trained with the same training data and using the same
training algorithm. The training for the adaptive network
is referred to as initial training. After training, the non-
adaptive network will be used to do fault diagnosis with
the test data without on-line training, while the adaptive
network will be used with the same test data but with on-
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line training. This establishes a fair basis for comparison
between the adaptive and non-adaptive classifiers.

The network input variables are chosen according to the
experience in engine modelling as the four variables shown
in Fig. 1: throttle angle, manifold pressure, manifold tem-
perature, and crankshaft speed. Therefore, the network has
4 inputs. Each network output is used to indicate the occur-
rence of one faulty state 0 (zero) implies that the fault does
not occur while 1 (one) implies that the fault occurs. There-
fore, the network has 17 outputs with each corresponding
to one fault or no-fault condition. Twenty data sets for dif-
ferent initial and final throttle angle positions are collected
as shown in Table 2.

Table 2 Details of data sets collected for training and testing

of RBF networks

Start degree of θ Accelerating Decelerating Data sets

22 26, 30, 34, 38 — 4

26 30, 34, 38 22 4

30 34, 38 26, 22 4

34 38 30, 26, 22 4

38 — 34, 30, 26, 22 4

The data sets which are reserved for testing are not used
for training. Many data sets were used for testing but at-a-
time only two sets were used. For example when two data
sets 26–34 and 34–26 are reserved for testing, then the re-
maining 18 data sets are used for testing. Later on another
two sets are reserved for testing (22 → 34 and 34 → 26)
and remaining sets are used for training and so on. As
each training data set has the same pattern for 17 faults,
one training target matrix Xo (see Fig. 7) is formed and
used for all the training data sets. Xo has 204 rows and
17 columns. Its first column has ones from the first row to
12th row and the other entries are zeros, the second column
has ones from the 13th row to the 24th row and the other
entries are zeros, the last column has ones from the 193rd
row to the 204th row and the other entries are zeros.

Thus, the transpose of the i-th row in Xo is used as the
training target vector for the i-th training pattern. The
centres are chosen using the K-means clustering algorithm
from the training data sets. The widths were chosen us-
ing the P -nearest neighbour′s algorithm, and the weights
were trained using the RLS algorithm. Two levels, 0 and
1, are used as the output targets of the classifier. Thus,
the target matrix is a unity diagonal matrix of dimension
17 (when there is one training pattern for each fault) with
each column being used as the classifier-training target vec-
tor. A successfully trained network will therefore diagnose
the fault intensity as well as the fault type.

Fig. 7 Target matrix Xo

4.3 Fault classification

Both adaptive and non-adaptive networks are used to
diagnose faults with test data sets after training with the
training data sets. The fault detection threshold in (4) was
chosen as rt = 0.5. High thresholds may lead to missed de-
tections while low thresholds will cause more false alarms.
Mathematically, rt should be a little bit higher than 0.5 ac-
cording to the level of noise in the testing data. However,
rt = 0.5 is found as a good compromise between reliability
of detection and insensitivity to noise. M in (3) is cho-
sen as 3, the averaged residual will be greatly reduced and
the false alarm is consequently reduced. The threshold for
the gradient of the objective function in (5) was chosen as
σ = 0.00001. The forgetting factor for the RLS algorithm
was chosen as a constant value of λ = 0.99.

Three different reference signals 2.5 krpm, 3.0 krpm and
3.5 krpm are chosen as Ref 1, Ref 2, and Ref 3 for the speed
control, respectively. No fault and faulty data is collected
for all the three reference signals, and then both the non-
adaptive and the adaptive RBF neural network classifiers
are trained and tested for six different sets of data. The re-
sults for training the networks on Ref 1 and testing on Ref 3
data are shown in Figs. 8 and 9. The number of centres for
the adaptive and non-adaptive networks is chosen as 100.

(a) Non-adaptive classifier (speed fed back and fixed laod)

(b) Adaptive classifier (normal load)

Fig. 8 Networks trained on Ref 1 and tested on Ref 3 (RBF hid-

den nodes = 100)
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Fig. 9 Details of each fault classification in Fig. 8 (b) shown sep-

arately for clarity (Left and right columns show results for state

1, 3, 5, 7, 9, 11, 13, 15, 17, and 2, 4, 6, 8, 10, 12, 14, 16, respec-

tively.)

It is clear that the non-adaptive classifier is not able to
classify the simulated faults while the adaptive network
classifies the faults with just a few peak values that may
cause false alarms when 0.5 is used as the fault detection
threshold. These faults are classified when the engine is un-
der closed-loop speed control. On comparison, it is found
that the adaptive classifier has performed far better than
the non-adaptive classifier. Unlike the non-adaptive classi-
fier, the adaptive classifier is able to identify all the faults
but with false alarms. For clarity, Fig. 8 (b) is shown in
an expanded form in Fig. 9 with every fault classification
shown separately. It can be seen that state 1 has one false
alarm, state 2 has two false alarms, and state 3 has one false
alarm and so on. Here, the requirement of data filtration is
because of the false alarms.

5 Robustness assessment of FDI sys-
tem

Further to introducing speed feedback control, robust-
ness assessment of the FDI system is carried out in the
following three different modes in increasing generality of
engine operation:

1) Load change;

2) Engine parameter change;

3) All the changes happening simultaneously.

5.1 Load change

To incorporate a provision for engine load change in the
MVEM, the crankshaft speed sub-model is modified. The
pumping power Pp and friction power Pf are functions
of absolute manifold pressure Pi and crankshaft speed n
whereas the load power Pb is only a function of crankshaft
speed as shown in (8). The load factor Kb (=0.47) is a con-
stant. Engine load can be changed by changing load power
Pb. The load on the engine in kW is given as:

Engine load = Kb · n3.

Engine load is equal to load power of engine and there-
fore,

Pb = Kb · n3.

Load power in the modified model is presented as

Pb = Kb · n3 + Lv

where Lv is load variation in kW and n is crankshaft speed
in krpm. The reference signal is kept fixed but the load on
the engine is changed in sinusoidal and saw-tooth style as
shown in Fig. 10 (a) and (b). The change in load is applied
through variable Lv as shown in the simulation diagram in
Fig. 2. In the case of a sinusoidal load change, the load on
the automobile (engine) can be negative for some time and
this represents downhill running of the vehicle. Similarly,
increase in load represents uphill running of the vehicle.

(a) Sinusoidal load change

(b) Saw-tooth load change

Fig. 10 Load response of system

Two sets of data are collected for no fault and faulty con-
ditions; the first set of data for sinusoidal change in load and
the second set for saw-tooth change in load. The reference
input signal is kept constant at 2.5 krpm for both data sets.
First of all, both networks are trained with data for sinu-
soidal load change and tested with data for saw-tooth load
change and then vice-versa. With both training data sets,
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(a)

(b)

(c)

Fig. 11 Networks trained on saw-tooth load and tested on

sinusoidal load. (a) Results for non-adaptive classifier

(Hidden nodes = 90); (b) Results for adaptive classifier

(Hidden nodes = 90); (c) Details of each fault classification in

(b) shown separately for clarity (Left and right columns show

results for state 1, 3, 5, 7, 9, 11, 13, 15, 17, and 2, 4, 6, 8, 10, 12,

14, 16, respectively.)

the classification results were found satisfactory. The clas-
sification test results for both classifiers when tested for
sinusoidal load change are shown in Fig. 11. The results of
the non-adaptive classifier are not good in Fig. 11 (a), and it
is not able to identify different faults, where as the adaptive
classifier is able to identify all the faults as shown in Fig. 11
(b) and (c) but with false alarms. There are several false
alarms in all and they can be seen in Fig. 11 (c) as small
spikes exceeding a threshold of 0.5.

5.2 Engine parameter change

The engine displacement is a constant for an engine and
is 1.275 litres for the MVEM. After a few years of oper-
ation, the engine displacement has a tendency to increase
by a small amount due to abrasion. In order to check the
robustness of the classifier against such ageing effect of the
engine, the no fault and faulty data for 1% increased engine
displacement (i. e., 1.01×1.275 litres) is collected. Both the
classifiers are trained for the normal engine data and then
tested on the data from increased engine displacement. In
this part of the experiment, the speed reference signal and
the load on the engine are not changed. It is found that the
performance of the adaptive classifier is much better than
the non-adaptive classifier but with false alarms. There are
several false alarms as small spikes exceeding threshold of
0.5.

5.3 All the changes happening together

Fig. 12 shows the networks trained on fixed reference and
tested on saw-tooth reference, sinusoidal load change and
1% increased engine displacement.

In order to improve the problem of false alarms, the signal
processing toolbox in Matlab is utilised and a third-order
low-pass digital filter is designed to suppress spikes in the
resultant data. A Butterworth digital filter can be designed
using the Matlab function “butter”. The function has two
arguments N and Wn for the order of the filter and cut-off
frequency, respectively.

(a)
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(b)

(c)

Fig. 12 Networks trained on fixed reference and tested on saw-

tooth reference, sinusoidal load change and 1% increased engine

displacement. (a) Non-adaptive classifier (Hidden nodes = 90,

trained on 2 krpm throttle, no load change, no displacement

change); (b) Adaptive classifier (Hidden nodes = 90, trained on

2 krpm reference throttle angle, no load change, no displacement

change); (c) Details of each fault classification in b shown sepa-

rately for clarity (Left and right columns show results for state

1, 3, 5, 7, 9, 11, 13, 15, 17, and 2, 4, 6, 8, 10, 12, 14, 16, respec-

tively.)

The function returns the filter coefficients in length N +1
vectors B and A, numerator and denominator respectively.
The cut-off frequency must be 0 < Wn < 1.0, with 1.0 cor-
responding to half the sample rate. The value of Wn is to
be chosen carefully. A high value may not do any filtration
at all whereas a very low value may cause a long time delay
and poor filtration. A value of 0.1 has been carefully cho-
sen for Wn which reduced the spikes to half of their original
height (i. e., much below the threshold of 0.5) and caused
little time delay. The false alarms are practically reduced
to zero times as shown in Fig. 13 (a) and (b).

It can be seen from the graphs in Fig. 13 that the spikes

(a)

(b)

Fig. 13 Classification results after using low-pass Butterworth

filter. (a) Comparison of classification result before and after fil-

tration for fault number 4; (b) Classification results of 12 after

filtration (Left and right columns show results for state 1, 3, 5,

7, 9, 11, 13, 15, 17, and 2, 4, 6, 8, 10, 12, 14, 16, respectively.)

causing false alarms have been filtered out and make the
classification more robust and reliable.

6 Conclusions

A new adaptive RBF based FDI method for an SI en-
gine is evaluated for robustness. The classifier is adapted
for its widths and weights to learn changes in the system
dynamics and environment. The robustness of the system
is investigated for a wide range of operational modes in
increasing generality. Robustness assessment has been car-
ried out against fixed and sinusoidal throttle angle inputs,
change in load, change in engine parameter, and all these
changes occurring at the same time for both adaptive and
non-adaptive networks. The adaptive network performs
very well and the simulation test results are satisfactory for
all the sixteen faults considered. The non-adaptive classi-
fier fails to cope up with the load change, parameter change,
etc. and thus is not robust whereas the adaptive network
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classifies all the faults correctly and the false alarm is re-
duced to zero by the use of a low-pass filter.

Robustness assessment against different types of un-
known faults and simultaneously occurring multi-faults are
considered for future work. The changes in four or more
engine parameters are also considered for future work.
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