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Abstract: This paper addresses evolutionary multi-objective portfolio optimization in the practical context by incorporating realistic
constraints into the problem model and preference criterion into the optimization search process. The former is essential to enhance the
realism of the classical mean-variance model proposed by Harry Markowitz, since portfolio managers often face a number of realistic
constraints arising from business and industry regulations, while the latter reflects the fact that portfolio managers are ultimately
interested in specific regions or points along the efficient frontier during the actual execution of their investment orders. For the former,
this paper proposes an order-based representation that can be easily extended to handle various realistic constraints like floor and
ceiling constraints and cardinality constraint. An experimental study, based on benchmark problems obtained from the OR-library,
demonstrates its capability to attain a better approximation of the efficient frontier in terms of proximity and diversity with respect
to other conventional representations. The experimental results also illustrated its viability and practicality in handling the various
realistic constraints. A simple strategy to incorporate preferences into the multi-objective optimization process is highlighted and the
experimental study demonstrates its capability in driving the evolutionary search towards specific regions of the efficient frontier.
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1 Introduction

The allocation of limited capital to the different financial
assets available is one of the paramount problems in finan-
cial management. Normally, the decision will be based on
some forms of quantitative measurement, most typically the
expected return of the portfolio and its associated risk, i.e.,
return variance. Intuitively, for a given level of return ob-
jective, portfolio managers will seek to reduce the risk as
much as possible. An optimal portfolio is one that has the
maximum return with the minimum risk and the set of all
the optimal portfolios will form the efficient frontier. Es-
sentially, the ultimate objective in portfolio optimization
is to balance the expected risk and return via diversifica-
tion and obtain the efficient frontier under various practical
constraints arising from business and industry regulations.

In the construction of a portfolio, portfolio managers
must select both the type of assets, as well as its quan-
tity (proportion or units). This combinatorial optimization
problem has a highly complex search space due to the abun-
dant choices of financial assets available. Thus, portfolio
optimization continues to pose a challenge for efficient opti-
mization techniques. Although many computational tech-
niques have been developed for this purpose, most of them
are single objective approaches, even though this problem
clearly consists of two conflicting objectives. However, there
are an increasing number of multi-objective approaches be-
ing developed, particularly multi-objective evolutionary al-
gorithms (MOEA)[1]. The main advantage of evolutionary
multi-objective portfolio optimization (EMOPO), i.e., the
application of MOEA for portfolio optimization, is that an
estimation of the efficient risk-return frontier can be ob-
tained in a single run as opposed to the multiple runs needed
in the case of single objective approaches.
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Most of the early works on EMOPO adopt the uncon-
strained Markowitz mean-variance model[2−4], which is im-
practical in the real world of investment management, as
portfolio managers often face a number of realistic con-
straints arising from business regulations, practical mat-
ters, and industry regulations[5]. While subsequent research
did incorporate them into the optimization model, in-depth
analysis that examined how these constraints affect the evo-
lutionary search progress and the efficient frontier attain-
able are sorely lacking.

This paper aims to consider a more realistic model of the
portfolio optimization problem by considering floor and ceil-
ing constraint and cardinality constraint, and analyze their
effects on the efficient frontier attainable. For this purpose,
an order-based representation that can be easily extended
to handle these constraints will be proposed. Furthermore,
this paper will improve the current experimental platform
for EMOPO by introducing diversity measures and statis-
tical analysis used typically in the performance assessment
of multi-objective optimizers. Lastly, there has been an
increased interest in incorporating decision makers′ prefer-
ences in the evolutionary search process of multi-objective
optimization[6] recently. This is especially relevant in port-
folio optimization as well where portfolio managers are only
interested in specific regions or points along the efficient
frontier during the actual execution of their investment or-
der. Such techniques will be explored and evaluated in the
context of EMOPO.

The remainder of the paper is structured as follows. The
paper will start with a formal introduction of the basic
portfolio optimization model and the various practical con-
straints available. This will be followed by a description of
the proposed evolutionary platform, focusing on the order-
based representation and its corresponding constraint han-
dling techniques. Subsequently, experimental results for
both the unconstrained and constrained problem will be
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analyzed to evaluate the viability and practicality of the
proposed algorithmic model. The last part of the paper
will investigate the effects of incorporating preference in
EMOPO before the conclusions are drawn in the last sec-
tion.

2 Portfolio optimization

The foundation of portfolio optimization was laid by
Markowitz[7], where he proposed a mean-variance optimiza-
tion model for designing an optimum portfolio based on the
idea of minimizing the risk for some expected return. The
following equations give an outline of the model.

min F1 =

N∑
i=1

N∑
j=1

wiwjσij (1)

max F2 =

N∑
i=1

wiµi (2)

subjected to
N∑

i=1

wi = 1 (3)

0 ≤ wi ≤ 1, i = 1, · · · , N (4)

where N is the number of assets available, µi is the expected
return of asset i, σij represents the covariance between as-
sets i and j, and wi is the decision variable denoting the
composition of asset i in the portfolio as a proportion of the
total available capital. Equation (3) gives the budget con-
straint for a feasible portfolio, while (4) requires all invest-
ment to be positive, i.e., no short selling is allowed. The goal
in portfolio optimization is to find portfolios amongst the
N assets that can simultaneously satisfy the two conflicting
objectives, i.e., minimize the total variance (1), denoting
the risk associated with the portfolio, while maximizing its
profits (2).

Related literatures in EMOPO have extended the mean-
variance optimization model by modifying the existing ob-
jective functions. Particularly, Arnone et al.[3] and Lo-
raschi et al.[4] considered downside risk (i.e., distribution
of the downside returns) in place of the return variance (1).
Alternatively, additional objective functions have been in-
corporated to enhance the original model. To handle the
cardinality constraints, Fieldsend et al.[8] considered the
cardinal as an additional objective to be optimized. This
approach allows the direct extraction of the 2-dimensional
cardinality constrained frontier for any particular cardinal-
ity. Other additional objectives considered in literature in-
clude surplus variance[9], portfolio value at risk[9], annual
dividend[10], and asset ranking[10]. Nevertheless, most re-
lated literature improved the realism of the mean-variance
model by incorporating realistic constraints encountered in
actual practice.

2.1 Practical constraints

In the real world of investment management, portfolio
managers often face a number of realistic constraints aris-
ing from business regulations, practical matters, and indus-
try regulations[5]. Examples of such realistic constraints
include floor and ceiling constraint, cardinality constraint,

round-lot constraint, turnover constraint, trading con-
straint, buy-in threshold and transaction cost inclusion[11].
The first three constraints will be considered in this pa-
per. However, due to the limitations of the problem set,
round-lot constraint will not be included in the experi-
mental study though the corresponding constraint handling
technique will be mentioned. The remaining constraints will
be considered in future work.

The floor and ceiling constraint specifies the lowest and
highest limits on the proportion of each asset that can be
held in a single portfolio. The former prevents excessive ad-
ministrative costs for very small holdings, which have neg-
ligible influence on the performance of the portfolio, while
the latter rules out excessive exposure to any one portfo-
lio constituent as part of institutional diversification policy.
This constraint is formulated as

ai ≤ wi ≤ bi, 0 ≤ ai ≤ bi ≤ 1 (5)

where ai and bi denote respectively the minimum and
maximum weights that can be held for asset i (i =
1, · · · , N). While floor constraint has been actively stud-
ied in [5, 10, 12–17], the general floor and ceiling constraint
has been less explored.

Cardinality constraint specifies the maximum and min-
imum number of assets that a portfolio can hold due to
monitoring, diversification or transaction cost control rea-
sons. It can be expressed as follows:

Cl ≤
N∑

i=1

zi ≤ Cu (6)

where zi = 1 if wi > 0, and otherwise, zi = 0. This con-
straint has been simplified in several related works, where
either the inequality restriction in (6) is replaced by an
equality restriction instead, i.e., portfolios are restricted to
a particular fixed value of cardinality[10−16,18] or only the
maximum cardinality constraint is considered[5,17,19].

Round-lot constraint requires the number of any asset
included in the portfolio to be in exact multiples of the
normal trading lots[5,20]. The round-lot constraint can be
expressed as

wi =
ciyi

C
(7)

where C is the total capital budget, ci is the purchasing
price for the minimum lot of asset i, and yi ∈ Z denotes
the number of lots purchased for asset i. The inclusion of
round-lot constraint most likely will require a relaxation of
the budget constraint as the total capital might not be of
exact multiples of the minimum lot prices for the various
assets. Also, since the round-lot constraint requires the ex-
act definition of the available capital and the minimum lot
prices for each asset, this constraint will not be considered
in the experimental study as the latter is not available in
the test problems studied.

2.2 Preferences in portfolio optimization

Essentially, the optimization problem is to find portfolios
amongst the N assets that can satisfy the two objectives of
return (2) and risk (1) simultaneously. Thus, the optimal
portfolio is one that has the maximum return with the min-
imum risk and the set of all the optimal portfolios will form
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the efficient frontier illustrating the tradeoff between the
conflicting objectives, as represented by FF in Fig. 1.

Fig. 1 Efficient frontier (FF ) illustrating the tradeoff between

return and risk for various portfolios of assets (Suboptimal port-

folios are denoted in gray; the line CC and point a denote the

capital market line and efficient portfolio, respectively.)

Even though knowledge of the efficient frontier is im-
portant, portfolio managers are only interested in specific
regions or points along the efficient frontier in practical sit-
uations. However, there have been limited developments
in the incorporation of preferences in EMOPO despite its
increasing popularity in the general field of multi-objective
optimization. The only available work in literature was pro-
posed by Subbu et al.[9], where they augmented the evolu-
tionary search with a target objective genetic algorithm,
which is a non-Pareto and non-aggregating function ap-
proach that allows solutions that are as close as possible to
a pre-defined target for one or more criterions to be found.
The limitations of this approach are that the decision maker
should have enough domain knowledge to select good com-
bination of objectives and determine scaling factors for each
objective.

In the context of portfolio optimization, portfolio man-
agers are often interested in a particular point on the effi-
cient frontier known as the efficient portfolio as described
in the capital asset pricing model (CAPM). The key princi-
ples underlying CAPM are illustrated in Fig. 1. The point,
Rf represents the risk-free return available in the market
to an individual, for example through short-term govern-
ment treasury bills. Line CC denotes the capital market
line, which is a straight line that passes through Rf and is
tangential to the efficient frontier FF . The point, a, at the
intersection of CC and FF is the efficient portfolio. The
significance of the efficient portfolio is that any combination
of it and the risk-free asset, attainable by either lending or
borrowing at the rate of Rf , will allow the individual to
operate at any point on the capital market line, above the
efficient frontier, resulting in higher return for any given
amount of risk than any optimal portfolio on FF .

Mathematically, the efficient portfolio is the point on the
efficient frontier that can maximize the objective function
(8).

max F3 =
(F2 −Rf )

F1
(8)

where Rf is the risk-free rate. This fitness measure is more
commonly known as the Sharpe ratio, a well-known finan-

cial indicator that calculates the risk-adjusted return for an
asset/portfolio. The latter part of the paper will discuss
how the incorporation of preference-based techniques could
drive the evolutionary search towards the efficient portfolio.

3 Evolutionary algorithm

The incorporation of constraints to improve the realism
of the portfolio optimization problem has obsoleted clas-
sical optimization techniques[1] and motivated the develop-
ment and application of meta-heuristics techniques like evo-
lutionary algorithms, ant colony optimization[16,21], parti-
cle swarm optimization[22] and etc. Amongst them, MOEA
is the more popular approach[1] due to its ability in solv-
ing complex multi-objective optimization problems with re-
spect to the proximity and diversity goals. Based on basic
concepts from the biological model of evolution, the search
dynamic of MOEA is driven by biologically inspired evo-
lutionary operators like selection, crossover and mutation,
which will explore and exploit the associated search space
for the optimal solution. The crossover and mutation op-
erator manipulate and create potential solutions, while the
selection operator provides the necessary convergence pres-
sure. When extending MOEA for portfolio optimization,
several issues need to be taken into consideration, namely
representation, variation operator and constraint handling
techniques.

3.1 Representation

MOEA maintains a population of chromosome, where
each of them represents a potential solution to the opti-
mization problem, which in the context of EMOPO is a
portfolio of assets. In the related literature, different types
of representation have been proposed. The most direct rep-
resentation is to use a real-number vector that denotes the
weight composition of the various assets in the portfolio[23].
Before the fitness evaluation, the total weight is normalized
to one to satisfy the budget constraint (3).

However, better algorithmic performance can be ob-
tained, if a problem specific representation is adopted in-
stead. Streichert et. al.[15] observed that the optimal port-
folio normally comprised of only a limited number of the
available assets. Thus, a hybrid representation was pro-
posed, where an additional binary string is included to re-
flect the existence of the assets in the portfolio. Such a
scheme facilitates the removal and adding of assets to port-
folios, resulting in smaller portfolios generally. This repre-
sentation has been popular in [5, 14, 15, 17]. Alternatively,
the weight vector can just comprise a few assets that are
randomly chosen prior to the algorithmic run[16,24]. This
approach provides a simple solution to the fixed cardinal-
ity constraint that limits the portfolio size to a particular
value.

Contrary to previous works, this paper proposes an order-
based representation for EMOPO. Each chromosome com-
prises of two vectors, i.e., a real number vector and an inte-
ger vector that contains the identity tags of the various as-
sets available, denoting their corresponding weights. Fig. 2
shows an instance of this representation for a problem with
eight assets available.
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Fig. 2 A chromosomal instance for the ordered-based represen-

tation proposed based on eight assets available

To find the portfolio associated with this chromosome,
an empty portfolio will first be initialized and assets will
then be added to it, as per their order in the asset vector.
This procedure will terminate once the total weight of the
portfolio exceed one or when all the available assets are in
the portfolio. The total weights for the assets in the port-
folio will then be normalized to one to satisfy the budget
constraint. After which, the returns and risk can be cal-
culated to determine its optimality. Fig. 3 illustrates the
fitness evaluation procedures for the chromosome in Fig. 2.
In Fig. 3, the assets are iteratively added into the portfo-
lio until the total weights exceed one. The various weights
in the portfolio are then normalized to one to satisfy the
budget constraint.

Fig. 3 Fitness evaluation for the chromosome

As each asset is added iteratively into the portfolio for
the order-based representation, direct monitoring and con-
trol of the weight values for each asset is possible at their
point of inclusion. Thus, constraint handling techniques
can be executed instantaneously to repair any infeasibility.
Further details of the constraint handling techniques will
be furnished in the later section.

The chromosome initialization process involves randomly
permuting the order of the asset vector and generating the
weights from certain probability distribution. The most di-
rect approach is to adopt the uniform distribution ranging
from 0 to 1 so as to satisfy constraint (4) directly. How-
ever, this will correspond to a mean weight of 0.5, which
implies that only around 2 to 3 assets are required to fill
up an empty portfolio. Thus, simple implementation of this
representation will tend to generate small portfolio. Specif-
ically, the average portfolio size for 100 000 randomly gener-
ated chromosomes is around 2.7 with a standard deviation
of 0.9.

Of course, the average portfolio size can be increased by
setting a maximum limit for the various weight values dur-
ing initialization, as this will increase the assets required
to fill up the portfolio. For example, imposing a maxi-
mum weight limit of 0.1 will increase the average portfolio
size to 20.7 with a standard deviation of 2.6. However,
this simple initialization strategy might not be able to im-
prove the diversity of the initial population by much. Fig. 4
plots the average portfolio size attained for various maxi-
mum weight limits, i.e., {5.0, 2.0, 1.0, 0.5, 0.2, 0.1, 0.05,

0.01}. Clearly, although a smaller maximum weight limit
will result in larger portfolio size, the diversity of the pop-
ulation remained unaffected.

Thus, an alternative initialization technique is suggested
here. Different maximum weight limits will be assigned to
the various chromosomes during the initialization process.
This will arbitrarily enhance the diversity of the initial pop-
ulation, as clearly evident in Fig. 4.

Fig. 4 Average portfolio size (maximum 50) for 100 000 ran-

domly generated chromosomes with different weight limits (“R”

denotes the case where each chromosome is assigned a different

limit.)

3.2 Variation operator

Since conventional crossover or mutation operators are
not suitable for the data structure of this order-based rep-
resentation, different variation operators have to be de-
signed. The proposed crossover operation is illustrated in
Fig. 5. In Fig. 5, genes after the crossover point are swapped
between the two parent chromosomes. Given two parent
chromosomes, a crossover point will be randomly selected.
Each chromosome will retain their original value before the
crossover point and the remaining values after it will be
rearranged in accordance with the order in the other chro-
mosome, i.e., the values {5, 2, 7} in chromosome 1 are re-
arranged to {2, 5, 7}, in the order where these three values
appear in chromosome 2. The corresponding weight vector
will also be reshuffled accordingly.

Fig. 5 Single-point crossover

However, not all the assets are included in the portfolio
as illustrated in Fig. 3. Thus, neutral variation[25] (where
redundancy in the genotype nullifies the effects of variation)
might arise if the crossover point is selected amongst those
irrelevant assets. Thus, the crossover point should be ran-
domly selected amongst the assets considered in the port-
folio. Specifically, the crossover point will be chosen within
the mean portfolio sizes for the two parent chromosomes.

The mutation operation is just a simple procedure of
swapping the asset and weights of two randomly selected
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alleles in a single chromosome, as illustrated in Fig. 6. In
Fig. 6, the position of randomly chosen genes are swapped.
Again to prevent neutral variation, it should be ensured
that at least one of the selected assets should be within the
portfolio. Both the variation operations discussed earlier
are typically used for order-based representation.

Fig. 6 Bit-swap mutation

3.3 Constraint handling techniques

The main advantage of this representation is that it can
easily be extended to handle the various realistic constraints
in portfolio optimization. This section will discuss the cor-
responding constraint handling techniques.

3.3.1 Floor and ceiling constraint

This constraint requires weight values to be within a spe-
cific range. Thus, the conventional strategy of normalizing
the total weight to one so as to meet the budget constraint
is no longer applicable here, since the normalized weights
might not be within the limits. Related works[10−17] focus
only on floor constraint and the conventional approach is to
arbitrarily add the minimum weight to any infeasible assets.

A simple technique is proposed here to handle the gen-
eral floor and ceiling constraints, which involves modifying
the fitness evaluation operation while maintaining the same
representation and variation operation and other evolution-
ary operators. The modified fitness evaluation will still ini-
tialize with an empty portfolio where asset is being added
iteratively. The representation nature allows direct control
on the manner in which the assets are introduced into the
portfolio and any infeasibility can be immediately repaired.
Thus, the floor and ceiling constraints are regarded as hard
constraints by ensuring that the various weight values are
adjusted to the floor and ceiling constraint as shown in (9).

w
′
i = ai + (bi − ai) · wi. (9)

Subsequently, assets will be added to the portfolio until the
total weight of the portfolio exceeds one. At this stage,
case-dependent correction techniques will be applied to en-
sure the feasibility of the final portfolio constructed. A total
of 3 different cases have been identified:

1) After removing the last added asset, the remaining
weight is between the floor and ceiling limits. In this case,
the weight of the last added asset can simply be reassigned
so that its adjusted weight is equivalent to the remainder
needed to attain a total weight of one.

2) After removing the last added asset, the remaining
weight is less than the floor limits. This case can be further
subdivided into two different scenarios.

i) After removing the second last added asset, the re-
maining weight is between the floor and ceiling limits. This
will mean that its weight can simply be reassigned so that
the adjusted weight is equivalent to the remainder that it
needed to attain a weight counter of one. The portfolio will
contain all the assets considered so far and the adjusted
asset.

ii) After removing the second last added asset, the re-
maining weight is outside the floor and ceiling limits. For
this case, all the weight vectors will simply be readjusted

by either increasing or decreasing them by a predefined per-
centage.

This modified fitness evaluation will ensure that all the
solutions generated during the evolutionary search progress
will always be feasible with respect to this constraint.
3.3.2 Cardinality constraint

Related works in literature have considered cardinality
constraint as a hard constraint and generalized the inequal-
ity restriction by an equality constraint[11−16,18]. Thus, a
fixed number of assets are arbitrarily selected based on the
fixed cardinal value before the weights are normalized to
satisfy the other constraints. Similar techniques can be em-
ployed to satisfy the maximal cardinality constraints[5,17,19]

by setting the weights of excess assets to be zero. However,
such techniques might have difficulties dealing with ceiling
constraints as the excess weights cannot be arbitrarily as-
signed to other assets.

This paper considers the general cardinality constraint
and regards it as a soft constraint instead. The repair op-
eration described as below, is used to correct the feasibility
of the chromosome.

If number of asset > maximum cardinal
Increase all weights by k %

else If number of asset < minimum cardinal
Decrease all weights by k %

end If

Specifically, the various values in the weight vector will be
increased/decreased when its associated portfolio size is too
high/low, so that fewer/more assets will be required in the
re-evaluation. This simple procedure will help to adjust the
portfolio size of infeasible chromosomes back to the feasible
range.

Because of the presence of infeasible solutions in the
evolving population, the selection operation will also have
to factor this into consideration. That is, the feasibility of
the portfolio will take priority over the optimality of the
solutions. This is applicable for both the parent selection
and the survivor selection.
3.3.3 Round-lot constraint

Because of the representation nature, round-lot con-
straints can be easily handled in a similar fashion as in
the case of floor and ceiling constraints. Essentially, for ev-
ery asset that is added into the portfolio, they will first be
adjusted based on the floor and ceiling constraints. Fol-
lowing that, they will be rounded down to the largest
weight available (10). Similar to techniques proposed by
Skolpadungket et al.[5], the remainder of the budget will be
allocated to the assets in the existing portfolio provided
that the ceiling constraint is not satisfied, and to the assets
outside the portfolio if the floor constraint can be satisfied.

w
′′
i = w

′
i − w

′
i · mod(

ci

C
). (10)

4 Experimental setup

To evaluate the performance of the proposed order-based
representation, it will be applied to a set of portfolio opti-
mization problems obtained from the OR-library[26]. These
problems contain the estimated returns and the covariance
matrix for groups of assets in different stock market indices.
Their details are summarized in Table 1. The difficulty of
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these problems is directly related to the number of assets
available.

Table 1 Description of experimental data sets

Problem index Data source Number of assets

PORT1 Hong Kong, Hang Seng 31

PORT2 German, DAX 100 85

PORT3 British FTSE 100 89

PORT4 US S&P 100 98

PORT5 Japanese Nikkei 225 225

The evolutionary platform adopted was a generic eli-
tist MOEA that maintained a fixed-size population and an
archive to store the best solution discovered. Both the pop-
ulation and the archive are assigned a size of 100 each. The
order-based representation proposed was adopted and the
length of each chromosome depends on the number of as-
sets available in each problem. In each generation, mating
individuals were selected via binary tournament from the
combined population of the existing evolved solutions and
archive. The selection criterion is based on Pareto domi-
nance. In the event of a tie, the niche count will be em-
ployed. Specifically, a niche radius of 0.01 in the normal-
ized objective space was considered. The mechanism of
niche sharing is used in the tournament selection as well
as diversity maintenance in the archive. The mating in-
dividuals would subsequently undergo variation operation
(i.e., crossover probability of 0.8 and bit-wise mutation of
1/N) to produce offspring for the next generation. The
generational stopping criteria were varied for each problem
based on their level of difficulty. Specifically, each problem
was run sufficiently until their performance can be properly
differentiated.

Unlike single-objective optimization, there are several
goals in multi-objective optimization[27, 28], most notably
proximity and diversity. The former describes the accu-
racy of the solution set while the latter measures how well
the solution set is defined. Despite so, most of the exper-
imental studies in EMOPO do not involve diversity mea-
sures and statistical analysis that are commonly used in
the performance assessment of multi-objective optimizers.
While generational distance[5] and average relative distance
to the efficient frontier[17,24] have been used on separate
occasions, other related works merely portray the efficient
frontier attained[9,16,20].

In this paper, a set of proximity and diversity measures
will be adopted that is commonly used in multi-objective
optimization. The generational distance metric, GD, is
used to measure proximity. It quantifies how “far” the ap-
proximation of the efficient frontier found (EFknown) is from
the actual efficient frontier[29,30] and is defined as

GD =

√√√√
(

1

m

m∑
i=1

d2
i

)
(11)

where m is the number of solutions found, di is the Eu-
clidean distance (in objective space) between the member i
in EFknown and its nearest member of the efficient frontier.
A low value of GD signifies that EFknown is very close to
the efficient frontier.

As for diversity, it depends on factors like the spread and
spacing of the solution set. The former can be measured by
the maximum spread, MS metric[28] which measures how
well the efficient frontier is covered by EFknown through
the hyper-boxes formed by the extreme function values ob-
served in both fronts. To normalize the metric, this metric
is modified as

MS =

√√√√√√√
1

L

L∑

l=1




(
max

1≤i≤m
f i

l − min
1≤i≤m

f i
l

)

(Fmax
l − Fmin

l )




2

(12)

where f i
l is the l-th objective of member i, Fmax

l and Fmin
l

are the maximum and minimum of the l-th objective in
EFknown. The greater the value of MS is, the more the
area of the efficient frontier is covered by EFknown. For
the latter, the metric of spacing, S, which measures how
“evenly” solutions in EFknown are distributed is chosen. It
is defined as

S =

√√√√ 1

m

m∑
i=1

(
di − d

)2

d
(13)

where di is the Euclidean distance (in objective space) be-
tween the member i and its nearest member in EFknown.
S will be low if the members in EFknown are evenly dis-
tributed.

5 Experimental results and discussion
about unconstrained portfolio opti-
mization

In this section, the unconstrained portfolio optimization
model (1)-(4) will be considered to analyze the performance
of the proposed evolutionary model. The algorithmic per-
formance of the order-based representation will be com-
pared with two other representations, namely real vector
representation[23] and hybrid representation[15]. The vari-
ous algorithm configurations are described in Table 2. Prior
investigations have revealed that uniform crossover resulted
in better algorithmic performance for these representations.
As for the proposed order-based representation, the differ-
ent initialization techniques mentioned earlier will be con-
sidered.

Table 2 Description of the various algorithm configurations in

the experimental study for unconstrained portfolio optimization

Algorithm configurations Notations

Real number representation with uniform crossover RR

Hybrid representation with uniform crossover HR

Order-based representation without initialization limit OR-1

Order-based representation with initialization limit of 0.1 OR-2

Order-based representation with initialization technique OR-3

30 independent simulation runs were performed for all ex-
periments and the same random seed was assigned to each
set of the runs so that all algorithms start with the same
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(a) PORT1 (100)

(b) PORT2 (300)

(c) PORT3 (300)

(d) PORT4 (300)

(e) PORT5 (500)

Fig. 7 GD, MS, and S obtained under the different algorithms for the different problems with varying stopping criteria

initial population. The simulation results are illustrated by
box plots to provide a statistical comparison of the perfor-
mances for the various algorithms. Since a mere difference
in the average of the qualitative metrics cannot be blindly
regarded as performance difference between the algorithms,

statistical test, namely the analysis of variance (ANOVA),
is used to examine the significance of the mean difference
between the various results.

The various performance metrics are illustrated in Fig. 7.
The performance of RR was significantly poorer than the
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rest, especially in terms of diversity of the EFknown at-
tained, as reflected by their low values of MS. This was
due to the nature of the representation, which favored large
portfolio sizes that were near to N , as verified by Table
3. Then, EFknown for RR was limited to the region of low
return and risk due to excessive diversification, and thus
failed to cover the entire efficient frontier. Fig. 8 shows the
Pareto front obtained by RR in PORT4.

Table 3 The average portfolio size and its corresponding

standard deviation for the various solutions attained by the

various algorithms in the different problems

RR HR OR-1 OR-2 OR-2

PORT1 30.99 4.74 3.30 4.38 3.52

(0.031) (0.48) (0.35) (0.62) (0.28)

PORT2 84.98 15.68 4.64 9.77 7.21

(0.043) (2.67) (0.82) (1.08) (1.50)

PORT3 88.98 16.84 4.27 9.23 7.02

(0.042) (2.97) (0.74) (1.67) (0.91)

PORT4 97.99 24.09 6.15 13.60 12.08

(0.0264) (3.08) (0.63) (1.23) (2.30)

PORT5 224.95 65.81 4.48 8.73 5.65

(0.089) (11.16) (0.57) (1.19) (1.24)

Fig. 8 EFknown of PORT4 obtained by RR in one of the algo-

rithmic runs (The dotted-line denotes the efficient frontier.)

ANOVA tests revealed no significant differences between
the GD attained by HR and OR-3. However, there are
significant differences in the degree in which they satisfy
the diversity goal of attaining a solution set that spans the
entire efficient frontier. Except for PORT1 and PORT3,
the ANOVA test reveals that OR-3 actually attains a sig-
nificantly higher value of MS as compared to HR. Figs. 9
and 10 compare the EFknown obtained by HR and OR-3 in
PORT2 and PORT4. They clearly illustrate the difference
in diversity under these two representations, in accordance
with Fig. 7. It is evident from Fig. 11 that OR-3 was able to
attain a set of solutions that is close to the efficient frontier
with sufficient level of diversity for the rest of the problems.
However, it is noticeable that certain regions of the efficient
frontier were not well-defined. Hence, to further improve
the algorithmic performance of OR-3 in terms of diversity,
local search operators could be deployed in future works to
improve the algorithmic convergence.

A closer examination in Fig. 7 reveals differences in the
algorithmic performance for the various initialization tech-
niques. As discussed earlier, OR-1 will favor smaller portfo-
lios, thus the algorithm will work with fewer assets initially

and then gradually increases the portfolio size during the
evolutionary search progress. This can be observed from
the evolutionary traces of the portfolio sizes in Fig. 12. On
the other hand, the application of the fixed initialization
limits of 0.1 or random initialization increases the initial
portfolio sizes, with the latter providing more diversity in
the initial population, as observed in Fig. 12 (b).

(a) HR (b) OR-3

Fig. 9 EFknown obtained by HR and OR-3 for PORT2 in one of

the algorithmic runs (The dotted-line denotes the efficient fron-

tiers.)

(a) HR (b) OR-3

Fig. 10 EFknown obtained by HR and OR-3 for PORT4 in one of

the algorithmic runs (The dotted-line denotes the efficient fron-

tiers.)

(a) PORT1

(b) PORT3 (c) PORT5

Fig. 11 EFknown obtained by OR-3 for selected problems in one

of the algorithmic runs (The dotted-line denotes the efficient

frontiers.)
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(a) (b)

Fig. 12 Evolutionary traces of (a) the average portfolio sizes

and (b) the corresponding standard deviation in PORT3 for

three different algorithms, i.e., {OR1, OR2, OR3}

(a) Generation 0

(b) Generation 50 (c) Generation 100

Fig. 13 EFknown attained by OR1 at different generations in

PORT3 (The dotted-line denotes the efficient frontiers.)

(a) Generation 0

(b) Generation 50 (c) Generation 100

Fig. 14 EFknown attained by OR3 at different generations in

PORT3 (The dotted-line denotes the efficient frontiers.)

The importance of diversity in the initial population is

reflected in the evolutionary traces of the objective space.
The diverse initial population generated by OR-3 as com-
pared with OR-1 (Fig. 13 (a) versus Fig. 14 (a)) resulted in a
more diverse set of solutions (in terms of MS) being evolved
eventually at generation 100.

6 Experimental results and discussion
about constrained portfolio optimiza-
tion

The experimental results earlier have demonstrated the
capability of the proposed order-based representation in
generating better approximation of the efficient frontier as
compared with the other representations. The experimental
study in this section will extend the evolutionary platform
to the constrained portfolio optimization model and evalu-
ate its constraint handling ability with respect to the floor
and ceiling constraint and cardinality constraints. Particu-
larly, the study will be restricted to PORT3 and the gener-
ational stopping criteria will be extended to 1000 to ensure
algorithmic convergence.

Before examining the results for the constrained portfolio
optimization model, it will be instructive to analyze how
portfolio size changes along the efficient frontier. Fig. 15
plots the risk against the portfolio size for all the solutions
obtained by OR3 for PORT3 in the 30 experimental runs.
Clearly, smaller portfolio sizes are associated with higher
risk bands while larger portfolio sizes possess smaller risk
due to diversification. Thus, the imposition of floor and ceil-
ing constraint and cardinality constraint, which will limit
the portfolio sizes, will influence the level of return and
risk attainable, and then restricting the constrained effi-
cient frontier to certain regions of the efficient frontier.

Fig. 15 The risk against portfolio size obtained by OR3 in

PORT3

Particularly in the context of floor and ceiling constraint,
the former will force a minimal exposure to those lower-
returning assets, while the latter will prevent the high op-
timal level of exposure to high returns assets, again forcing
an exposure to lower-returning assets. This will ultimately
reduce the overall portfolio′s return, resulting in suboptimal
portfolio. To verify this hypothesis, two sets of floor and
ceiling constraints, {1%, 2%} and {10%, 11%}, are consid-
ered. Fig. 16 shows the constrained EFknown. Clearly, with
this constraint, it is not possible to approximate the entire
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efficient frontier, and EFknown attained are limited to the
low risk-return region.

(a) {1%, 2%} (b) {10%, 11%}

Fig. 16 Constrained EFknown attained for PORT3 with different

floor and ceiling constraint (The dotted-line denotes the uncon-

strained efficient frontiers.)

To further investigate the effects of floor and ceiling con-
straint on portfolio sizes, different values of the constraint
were considered and the average portfolio sizes obtained
under the various instances is shown in Fig. 17. The dark
region denotes the infeasible case where the floor constraint
is higher than the ceiling constraint. With the floor and
ceiling constraint, the average portfolio size generally in-
creased as compared with 7.02 in the unconstrained case.
By using a higher ceiling constraint, larger weight values
are possible, resulting in the reduction of the portfolio size.
Similarly, increasing the floor constraint will have the same
effect as larger weight values were required. Comparing the
set of constraint considered, {1%, 2%} attains a larger port-
folio size, resulting in the attainable Pareto front to be sit-
uated near the low risk and return region in Fig. 16 (a) due
to excessive diversification. On the other hand, increasing
the constraints values to {10%, 11%} allows higher risk–
return portfolio to be attained and stretched the attainable
EFknown upwards as shown in Fig. 16 (b).

Fig. 17 Average portfolio size obtained for various values of floor

and ceiling constraint

Contrary to the floor and ceiling constraints, cardinality
constraint influences the portfolio size directly. Thus, the
cardinality-constrained efficient frontier might be discon-
tinuous, as certain portfolios will not be available for the
rational investor[18]. Fig. 18 shows the effects of adopting a
fixed cardinality constraint. The discontinuity phenomenon
is clearly evident here where the tight cardinality constraint

confined the constrained EFknown to the high risk region as
efficient risk diversification is ruled out.

(a) {2, 2} (b) {3, 3}

Fig. 18 Constrained EFknown attained for PORT2 with differ-

ent cardinality constraints (The dotted-line denotes the uncon-

strained efficient frontiers.)

However, as the cardinality limits were relaxed, the con-
strained EFknown became more continuous as illustrated in
Fig. 19 where the constraints were relaxed to {2, 3} and
{1, 4}, respectively. However, the low risk-return regions
are not very well defined since large portfolio sizes are not
possible under these constraints. Nevertheless, it should be
highlighted that the actual effects on the constrained fron-
tier ultimately depend on the extent of relaxation in the
cardinality constraints. Conversely, in the case for higher
values of cardinality constraints in Fig. 20, the constrained
EFknown are now confined to the low-risk region, since only
large portfolio sizes are allowed.

(a) {2, 3} (b) {1, 4}

Fig. 19 Constrained EFknown attained for PORT3 with differ-

ent cardinality constraints (The dotted-line denotes the uncon-

strained efficient frontiers.)

(a) {35, 35} (b) {32, 38}

Fig. 20 Constrained EFknown attained for PORT3 with differ-

ent cardinality constraints (The dotted-line denotes the uncon-

strained efficient frontiers.)
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To further evaluate the generality of the constraint han-
dling technique, both floor and ceiling constraint and car-
dinality constraint is considered together. Previous result
shows that for a floor and ceiling constraint of {1%, 12%},
the portfolio size ranged from 15 to 35 with a mean value of
23. Adopting this value of floor and ceiling constraint, dif-
ferent cardinality constraints were considered and the con-
strained EFknown was compared with that obtained with-
out the cardinality constraint. Generally, the proposed con-
straint handling technique is able to attain an EFknown that
satisfies both the constraints. Different levels of cardinal-
ity constraints restrict the constrained EFknown to differ-
ent risk-return regions, i.e., the cardinality constraint {15,
20} which is below the mean portfolio size corresponds
to the higher risk-return region while the higher cardinal-
ity constraint corresponds to the lower risk-return region.
Fig. 21 (c) shows that if the cardinality constraint is fixed
outside the optimal portfolio size range, it will result in a
suboptimal Pareto front. It should be highlighted that if
these constraints are too rigid, there might be a possibility
that there will not be any feasible portfolio. Take for exam-
ple a maximum cardinality of 3 and a ceiling constraint of
0.1, the minimum portfolio size based on the latter, i.e., 10,
could not possibly satisfy the cardinality constraint under
any circumstances.

(a) {15, 20}

(b) {25, 30} (c) {50, 55}

Fig. 21 Constrained EFknown attained for PORT3 with com-

bined floor and ceiling constraints at {1%, 12%} and differ-

ent cardinality constraints (The dotted-line denotes the uncon-

strained efficient frontiers.)

This simple exercise has illustrated the viability of the
proposed approach in attaining a feasible EFknown under
these two constraints. Nevertheless, an experimental study
based on proper statistical tests, similar to Section 5, is
necessary for the proper evaluation of the constraint han-
dling capability of the algorithm in terms of its effectiveness
and efficiency. This will be reserved for future work, as cur-
rently, there are no other proposed MOEA that can operate
under these two constraints.

7 Experimental results and discussion
about preference-based portfolio op-
timization

As mentioned earlier, there has been an increased interest
in incorporating preferences in the evolutionary search pro-
cess of multi-objective optimization lately[6]. Even though
the use of preference information essentially casts the op-
timization problem into the single-objective domain, thus
possibly undermining the multi-objective optimization ap-
proach, the main advantage of adopting the latter with
preferences-based techniques with respect to the former is
that they generate higher diversity in the search efforts and
provides alternatives in the proximity of the preferred re-
gion.

A simple technique to incorporate preferences in the
optimization process is considered here. In the event of
tie during the selection process which is based on Pareto
dominance, the objective function (8) will be used in-
stead of the niche count. This technique is incorporated
into the MOEA used earlier and is denoted as preference-
based multi-objective evolutionary algorithms (PMOEA).
For comparison, a single-objective evolutionary algorithm
(SOEA) based on (8) is also considered as listed in Table 4.

Table 4 Description of the various algorithm configurations in

the experimental study for preference-based portfolio

optimization

Algorithms Notations

Single-objective evolutionary algorithms SOEA

Multi-objective evolutionary algorithms MOEA

Preference-based multi-objective PMOEA

Evolutionary algorithms

The various algorithms are applied to the same set of
portfolio optimization problems used earlier. Three differ-
ent values of Rf are considered for each problem, namely
25%, 50%, and 75% of the returns, which correspond to
three capital market lines and efficient portfolios. The ef-
ficient portfolios are located at different regions of the ef-
ficient frontier. It should be highlighted that the risk-free
rate will normally be situated at lower return-percentiles.
The various values are listed in Table 5 and Fig. 22 gives a
clear illustration of how these values are obtained in each
problem.

Table 5 Values of Rf for the various problems (optimal F3

highlighted in parentheses)

Problem PORT1 PORT2 PORT3 PORT4 PORT5

25% Rf 0.0034 0.0030 0.0026 0.0028 0.0010

(3.2402) (11.0774) (8.2546) (9.1543) (4.0154)

50% Rf 0.0068 0.0059 0.0053 0.0056 0.0020

(0.9591) (4.0934) (2.5864) (2.6803) (2.3330)

75% Rf 0.0102 0.0089 0.0079 0.0083 0.0030

(0.1315) (0.3799) (0.1835) (0.3351) (0.8283)
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Fig. 22 Three values of Rf are derived based on 25%, 50%, and

75% returns

The algorithmic performances are evaluated based on the
number of fitness evaluations required to reach within 5%
of the optimal fitness (8) for the respective problem and
Rf . The mean fitness evaluations taken in 30 experimental
runs are illustrated in Fig. 23.

(a) PORT1 (25% Rf ) (b) PORT1 (50% Rf )

(c) PORT1 (75% Rf ) (d) PORT2 (25% Rf )

(e) PORT2 (50% Rf ) (f) PORT2 (75% Rf )

(g) PORT3 (25% Rf ) (h) PORT3 (50% Rf )

(i) PORT3 (75% Rf ) (j) PORT4 (25% Rf )

(k) PORT4 (50% Rf ) (l) PORT4 (75% Rf )

(m) PORT5 (25% Rf ) (n) PORT5 (50% Rf )

(o) PORT5 (75% Rf )

Fig. 23 The mean fitness evaluation

In Fig. 23, the mean fitness evaluation to reach within 5%
of the optimal fitness (8) is obtained under the different al-
gorithms for the different problems and Rf . In most cases,
MOEA locates the preferred region since the efficient port-
folio is ultimately part of the efficient frontier. However,
there are improvements in the convergence time to obtain
solutions in the vicinity of the preferred region after intro-
ducing the preference knowledge in the selection criteria.
Interestingly, these improvements are especially significant
whenever there is a large performance difference between
SOEA and MOEA. For example, the significant algorith-
mic improvement in PORT2 for 75% Rf corresponds to the
huge performance differences between SOEA and MOEA,
while the contrary is observed for 25% Rf . The performance
difference actually reflects the difficulty in locating the ef-
ficient portfolio on the efficient frontier and hence the level
of improvement attainable. Thus, application of PMOEA
will be more justified in such cases. Nevertheless, PMOEA
is able to converge faster to the efficient portfolio generally
as compared with SOEA, yet at the same time, offers more
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alternatives in the vicinity of the preferred region.
Fig. 24 shows the approximated efficient frontier for

MOEA and PMOEA for PORT3. Clearly, while MOEA
blindly drives solutions towards the efficient frontier, the
incorporation of preference in PMOEA was able to direct
solutions towards the efficient portfolio. The close-up il-
lustration in Fig. 25 shows that PMOEA is able to obtain
solutions near the efficient portfolio as opposed to SOEA.
In Fig. 25, solution obtained by SOEA is included as a refer-
ence. Furthermore, solutions attained by PMOEA provide
alternatives around the targeted region, allowing the port-
folio to have more choices and a better understating of the
problem.

(a) MOEA (b) PMOEA

Fig. 24 Estimation of the efficient frontier attained by MOEA

and PMOEA for PORT3 with Rf =0.0079 within 10 000 fitness

evaluations (The star and dotted-line denote the corresponding

efficient portfolio and the efficient frontier, respectively.)

Fig. 25 Close-up illustration of the efficient frontier in the vicin-

ity of the efficient portfolio (The star and dotted-line denote the

corresponding efficient portfolio and the efficient frontier, respec-

tively.)

8 Conclusions

This paper first introduced an order-based representa-
tion for EMOPO, which is capable of generating better ap-
proximation of the efficient frontier with respect to other
conventional representations. Second, experimental results
illustrate that the floor, ceiling constraint and cardinality
constraint can be handled simultaneously by the proposed
approach, enabling the constrained efficient frontier to be

studied. Finally, the incorporation of preference-based tech-
niques into the proposed evolutionary platform enhances its
capability as a decision support system for portfolio man-
agers in real-world implementation. Nevertheless, it is nec-
essary to extend the evolutionary optimization model to
handle other realistic constraints like round-lot constraints
and transaction costs and evaluate its viability and practi-
cality on more comprehensive test problems.
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