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Abstract: This paper is motivated by the interest in finding significant movements in financial stock prices. However, when the
number of profitable opportunities is scarce, the prediction of these cases is difficult. In a previous work, we have introduced evolving
decision rules (EDR) to detect financial opportunities. The objective of EDR is to classify the minority class (positive cases) in
imbalanced environments. EDR provides a range of classifications to find the best balance between not making mistakes and not
missing opportunities. The goals of this paper are: 1) to show that EDR produces a range of solutions to suit the investor′s preferences
and 2) to analyze the factors that benefit the performance of EDR. A series of experiments was performed. EDR was tested using a
data set from the London Financial Market. To analyze the EDR behaviour, another experiment was carried out using three artificial
data sets, whose solutions have different levels of complexity. Finally, an illustrative example was provided to show how a bigger
collection of rules is able to classify more positive cases in imbalanced data sets. Experimental results show that: 1) EDR offers a range
of solutions to fit the risk guidelines of different types of investors, and 2) a bigger collection of rules is able to classify more positive
cases in imbalanced environments.
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1 Introduction

In a previous work of [1], we introduced an approach to
generate and evolve a set of decision rules called evolving
decision rules (EDR). The aims of EDR are as follows:

1) Classify the minority class in imbalanced environ-
ments;

2) Produce a range of solutions to suit different users
preferences;

3) Generate comprehensive decision rules that can be un-
derstood by the user.

EDR is an evolutionary process that evolves decision
rules; this is able to generate different solutions every time
it is performed.

This paper is organized as follows. Section 2 exposes the
motivation of this work and provides a brief explanation
about previous works done in this area, disclosing the main
differences among those works and our approach. Section
3 describes the procedure of EDR. Section 4 describes
the experiments and results to test our approach. The
conclusions are given in Section 5.

Notations

Rep : Repository of rules.

µ : Maximum number of rules in Rep.

ϕ : Number of initial descendants per rule in

Rep.

s : Current number of rules in Rep.

ρ : Size of the population.

β : Percentage of population created by the

rules.

h : Hill-climbing probability.
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τ : A set of decision thresholds.

ei : Positive instance correctly predicted.

2 Motivation

The prediction of the minority class in imbalanced data
sets is a problem in the machine learning field[2−5]. Unfor-
tunately, many real world problems need the detection of
rare cases, for example the detection of oil spillage[6], fraud
detection[7], and illnesses prediction[8, 9].

To build an application that evolves and collects rules,
we propose EDR, which is an evolutionary process that is
based on selection, mutation, and hill-climbing. The aim of
this method is to evolve a set of rules that holds different
patterns of the positive cases. As shown in [10] and [11],
some rules that classify positive cases could be eliminated
during the evolutionary process. For that reason, we pro-
pose to collect rules to ensure that all the useful patterns
produced by the evolutionary process will be included in
the final solution of the problem. The result is a set of rules
that are sorted according to their precision. The aim is to
generate a range of solutions to suit different user′s prefer-
ences. Additionally, the analysis of the pattern(s) that are
used to predict allows users to combine their knowledge to
make a well-informed decision.

EDR[1] is inspired by two previous works: evolution-
ary dynamic data investment evaluator (EDDIE)[12−15] and
repository method (RM)[10, 11, 16, 17]. EDDIE is a financial
forecasting tool based on genetic programming (GP)[18].
EDDIE is trained using a set of examples to detect op-
portunities in future data sets. However, when the target
is to detect high movements in stock prices, the number of
positive examples is scarce and it becomes very difficult to
identify those events.

On the other hand, RM analyzes the solutions proposed
by a GP to gather rules (patterns) that classify the minority
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class (positive cases) in diverse ways. The resulting patterns
are used to classify the minority class in imbalanced data
sets.

Previous works.
This section describes some works related to the evolu-

tion of decision rules. The majority of the works that evolve
decision rules have used genetic algorithms to evolve a com-
plete set of rules (Michigan approach[19]) or a population of
set of rules (Pittsburgh approach[20, 21]).

Our approach has some similarities to the Michigan
approach[19] because EDR evolves rules and the solution
of the problem is composed by the complete set of rules. In
contrast, in the Pittsburgh approach[20, 21], every individual
in the population represents a complete set of rules. Thus,
every individual holds an integral solution of the problem.

There are works that evolve decision rules by using a
standard GP. Every decision tree classifies a single class.
Once the evolutionary process has finished, the best in-
dividual of the evolution is converted into classification
rules[22−24]. The corresponding authors claim that their
approaches are able to generate comprehensible rules. How-
ever, GP tends to accumulate extra-code[18, 25, 26] and un-
less the rules are simplified, these can present the real vari-
ables and conditions that are involved in the rule. In con-
trast, EDR provides a simplification of rules that helps to
identify the real conditions in the rules. In addition, to pre-
dict the minority class, especially in extreme imbalanced
environments, it is better to collect all the available pat-
terns. Otherwise, the best tree of the evolution would con-
tain just patterns that may not repeat themselves in future
data sets. The example in Section 4.3 illustrates that situa-
tion. None of the mentioned applications is able to provide
a range of solutions to suit different user′s preferences.

3 Evolving decision rules procedure

This section describes the EDR procedure. It starts by
describing the idea behind this approach, then an overview
of EDR is provided and finally the description of each step
is explained in detail.

EDR evolves a set of decision rules by using GP and it re-
ceives feedback from a key element that is called repository.
Let us define the repository as a structure, whose objective
is to store a set of rules. The resulting rules are used to cre-
ate a range of classifications that allows the user to choose
the best trade-off between the misclassifications and false
alarms cost. Before explaining in detail how EDR works,
let us give a general overview of the mentioned approach.

Step 1. Creation of the initial population. Create a pop-
ulation of random decision trees.

Step 2. Extraction of rules. Analyze every decision tree
to delimit their rules and select the useful patterns.

Step 3. Rule simplification. Process the new rule to re-
move the redundant and vacuous conditions.

Step 4. Adding new rules to the repository. Detect new
rules by comparing the new one with the existing rules
in the repository. If the rule is different, then this is
added to the repository. If there is a similar rule in the

repository but the new one offers better performance
then the old rule is replaced by the new one.

Step 5. Creation of a new population. Create the new
population taking as parents the rules that are stored
in the repository. The next generation will be created
using the mutation operator and hill-climbing. The
process is repeated from Step 2 until the algorithm
has reached the maximum number of generations.

Step 6. Testing EDR. Once the evolutionary process
has finished, EDR is tested by using another data
set. It is evaluated by using sub-collections of
rules from the repository. Those rules are grouped
according to their precision (i.e., Precision =
{1.00, 0.95, 0.90, · · · , 0.05, 0.00}).

A general description of EDR has been introduced; in the
following sections, this approach will be described in detail.

3.1 Initialization of population

The objective of this procedure is to create a collection
of candidate solutions. We propose to create a population
of decision trees using the discriminator grammar (DG) de-
scribed in [1]. We used DG for the following reasons:

1) It simplifies the delimitations of the rules in the deci-
sion trees;

2) It maintains the valid structure of the individuals.

At this point, a question arises. If the system evolves
decision rules, why is the population composed by decision
trees? It is because a single individual (decision tree) could
contain more than one rule, thus the creation of decision
trees generates more solutions. Using disjunctions (“OR”),
the number of rules in the decision tree increases notably; as
a consequence, the probability of finding valuable patterns
increases too.

3.2 Rule extraction

This part of the process analyzes every decision tree to
delimit its rules and select those patterns that are useful
to the classification. This process is applied to the entire
population because it was showed that many useful rules
can be obtained from the whole GP population[10, 27]. It
was possible to discover predictive rules even in low-fitness
individuals. The main reasons to divide a decision tree to
its corresponding rules are as follows:

1) Identify the patterns in the decision trees;

2) Understand the rules easily.

Let T be a decision tree; the objective of this procedure
is to find the set of rules, such as, T = {R1∨R2∨· · ·∨Rn}.
Let us define a rule Ri ∈ T as a set of conditions that are
associated by conjunctions “AND”. Ri represents a minimal
set of conditions that satisfies the tree T .

Once a rule Rk ∈ T has been delimited, it is evaluated
using the training data set. If the precision of Rk achieves
a predefined precision threshold PT , where PT > 0, then
Rk is considered for the Step 3 in Section 3, otherwise Rk

is discarded.
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3.3 Rule simplification

The aim of rule simplification is to remove vacuous and
redundant conditions. A condition ci in a rule R is re-
dundant if there exists at least another condition ck ∈ R
such as ci implies ck. In other words, redundant condi-
tions are those which are repeated or report the same event
e.g. R1 = {var1 > 0.5 and var1 > 0.7} the first con-
dition is redundant. A condition ci is vacuous in a rule
R in relation to a data set D if under the conditions in
R, ci does not affect the decision of the rule, such as
Performance(R) = Performance(R − ci). To simplify
rules, we have divided the conditions to hard and flexi-
ble. Let a hard condition be the equation that compares
two variables (e.g. var1 < var2). Let a flexible condi-
tion be the equation between a variable and a threshold
(e.g. var1 < 0.8). Let similar conditions be a group of
conditions that have the same variable and operator. For
example, var1 < 3 and var1 < 2 are similar conditions.
Conditions have been divided to hard and flexible, because
the conditions that compare thresholds could be difficult to
differentiate (e.g. var1 < 0.8912 and var1 < 0.8910). How-
ever, these can be easily simplified (e.g. var1 < 0.8910).

The simplification of rules is an important process for the
following reasons:

1) Recognize the real variables and conditions that are
involved in the rule;

2) Identify the duplication of rules in the repository. This
assures the existence of different rules, increasing the
variety of the solutions;

3) Remove the conditions that are not affecting the per-
formance of the tree in the training data set. It reduces
the risk of including conditions whose behavior could
be unpredictable in future data sets.

3.4 Adding new rules in the repository

Once a rule Rk has been simplified, we have to determine
the novelty of that rule by comparing Rk to the existing
rules in the repository. To compare rules effectively, these
have been divided in two categories, hard and flexible rules.
Let Ri be a hard rule, if it is composed exclusively of hard
conditions. Let Ri be a flexible rule if it has at least one
flexible condition. Finally, let Rk and Ri be similar rules
if these have the same hard conditions and similar flexible
conditions. The comparison of hard rules is straightfor-
ward, but the comparison of flexible rules is more complex,
because rules contain thresholds. The following policy de-
termines the inclusion of rule Rk in Rep.

• If Rk is a hard rule and @ Ri ∈ Rep such as Ri =
Rk, then Rep = Rep ∪ Rk, but if the cardinality of
|Rep| > µ, then Rep = Rep − Rw where Rw ∈ Rep
and Fitness(Rw) ≤ Fitness(Ri), ∀ Ri ∈ Rep.

• If Rk is a flexible rule and ∃ Ri ∈ Rep such as Rk and
Ri are similar rules and Fitness(Rk) > Fitness(Ri),
then Rep = (Rep−Ri) ∪Rk.

• If Rk is a flexible rule and @ Ri ∈ Rep such as Rk

and Ri are similar rules, then Rep = Rep ∪ Rk, but

if the cardinality of |Rep| > µ, then Rep = Rep− Rw

where Rw ∈ Rep and Fitness(Rw) ≤ Fitness(Ri) ∀
Ri ∈ Rep.

Notice that the number of rules is limited by the pa-
rameter µ and when the number of rules in Rep is bigger
than µ, then the worse rule in Rep has to be deleted. The
replacement of rules is an important part of this process be-
cause this is applied to flexible rules which hold conditions
with continuous thresholds. Thus, every time a flexible rule
is replaced by a better similar rule, the thresholds are be-
ing approximated to the “optimal” values. In this process,
the performance is measured by the geometric mean of the
product of precision times recall to encourage the recall.

3.5 Creation of a new population

This section describes the procedure to generate a new
population of individuals. The population will be totally
replaced by a new population of decision trees created by
means of the mutation and hill-climbing of the existing rules
in the repository. The number of rules in the repository is
variable because it depends on the new patterns that have
been found. The number of rules is limited by µ, which
represents the maximum number of rules in the repository.
The creation of a new generation follows the guidelines be-
low.

• (s · ϕ ≤ ρ). At the beginning of the evolutionary pro-
cess, when the product of the current number of rules
in Rep times the number of initial descendant per rule
is less than the population size, the system will replace
the population in the following generation with ϕ off-
spring per rule. If the number of new offspring is less
than the population size, then the remaining individ-
uals will be created randomly by the grow-method.

• (s · ϕ > ρ). It is obvious that the repository is con-
tinuously growing and so, there is a maximum number
of rules that can be stored. Now, we have to con-
sider when the product of the current number of rules
in Rep multiplied by the number of initial descendant
per rule is greater than the population size (ϕ · s > ρ),
then the rules have to reproduce less and of course,
the number of offspring is limited by |ρ/s|. Because
the value of the division is truncated, the number of
offspring is less than the size of the population, thus
the remaining individuals are created at random.

• (s = µ and s > ρ). When the repository is totally full
and the number of rules is greater than the population
size, just a fraction of rules in Rep is allowed to produce
one descendant. The rules to produce offspring are se-
lected randomly without any type of elitism. However,
those descendants will produce only β% of the popu-
lation. The remaining individuals will be created at
random to create variety. β is a parameter, which is
determined by the user.

• The hill-climbing is applied randomly using a prob-
ability h, which will be one of the descendants of a
rule. The remaining individuals, if any, are produced
by mutation.



A. L. Garcia-Almanza and E. P. K. Tsang / Evolving Decision Rules to Predict Investment Opportunities 25

3.6 Rule evaluation

Once the evolutionary process has finished, the final rules
in the repository will be used to classify the testing data set
as follows:

1) Sort the rules by precision in descending order;

2) Define a set of thresholds τ = {τi} between [0, 1] sep-
arated at regular intervals for example: τ={0, 0.05,
· · · , 1};

3) For each threshold τi, select those rules from Rep
whose precision is greater or equal to τi, then store
those rules in a sub-repository Repτi = {Rτik} where
Rτik is a rule, such as, Precision(Rτik ) ≥ τi ∀ Rτik ∈
Repτi ;

4) For each example in the data set, if at least one of
the rules in the sub-repository satisfies the example,
this is classified as positive, otherwise it is considered
negative.

EDR has been designed to produce as many classifica-
tions as much as the number of thresholds τ . Each of those
classifications can be plotted in the receiver operating char-
acteristic (ROC) space[28, 29]. The result is a curve that can
be used to measure the general performance of the classifier
and to choose the best tradeoff between misclassifications
and false alarms.

4 Experimental section

This section describes a series of experiments to test our
approach. First, a series of experiments was performed to
compare EDR performance with a standard GP and RM,
as presented in Section 4.1. Next, an experiment to test
the performance of RM in different levels of complexity is
described in Section 4.2. Finally, Section 4.3 shows an ex-
ample, which illustrates the role of a set of rules.

4.1 Experiment: Comparison of EDR
with a standard GP and the RM

4.1.1 Objective

The objective of this experiment is to analyze the per-
formance of EDR and to compare this with a standard GP
and the RM performance.

4.1.2 Procedure

The set of rules generated by EDR was used to create
twenty classifications using the same number of thresholds
τ . The parameters used to run RM are listed in Fig. 1. The
values of the corresponding parameters are listed in Table 1.

Fig. 1 Barclays′ parameters and results

Table 1 Barclays′ parameters (March, 1998 – January, 2005)

Notations Values

Rate of return 15%

Number of days 10

Tendency movement Increase

Training data set Training examples 887

Positive examples: 39 (4.3%)

Testing data set Testing examples: 831

Positive examples: 24 (2.8%)

EDR parameters Number of runs 20

Area under the ROC curve (AUC) 0.81

Precision threshold (PT ) 0.08

Population size (ρ) 1000

Number of initial spring (ϕ) 10

Individuals random (β) 20

Max number of rules (µ) 2500

Number of generations 25

Hill-climbing probability 0.14

4.1.3 Observations

Fig. 1 shows the ROC curve created by EDR. Notice that
the classifications provided by EDR are well-distributed
over the ROC curve, thus, it is possible to find conservative
and liberal predictions. Now, let us discuss the points that
form the curve. For instance, when τ is equal to 0.50, the re-
call has a high performance because EDR was able to detect
78% of the positive examples, this result has not sacrificed
the accuracy (78%). When the investor′s risk-guidelines is
conservative, EDR offers a range of suitable classifications,
for instance, when the threshold τ= 0.70 the system is able
to classify 23% (almost a quarter) of the positive cases with
a very high accuracy (92%). On the other hand, when τ
is smaller than or equal to 0.40, then the classifier′s perfor-
mance tends to decrease because the number of new positive
cases that are detected is paid with a serious decrease on
the accuracy and precision. Table 2 shows the results using
Barclays′ parameters.
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Table 2 EDR results using Barclays′ parameters

τ Recall Precision Accuracy τ Recall Precision Accuracy

1.00 0.01 0.09 0.97 0.50 0.78 0.10 0.78

0.95 0.01 0.09 0.97 0.45 0.83 0.08 0.72

0.90 0.02 0.11 0.97 0.40 0.85 0.07 0.64

0.85 0.05 0.10 0.96 0.35 0.86 0.05 0.55

0.80 0.08 0.10 0.95 0.30 0.90 0.04 0.41

0.75 0.18 0.11 0.93 0.25 0.94 0.04 0.25

0.70 0.23 0.11 0.92 0.20 0.98 0.03 0.14

0.65 0.34 0.11 0.90 0.15 1.00 0.03 0.06

0.60 0.51 0.11 0.87 0.10 1.00 0.03 0.06

0.55 0.61 0.11 0.84 0.05 1.00 0.03 0.06

Standard GP comparison. The result of the best
individual produced by a standard GP is Recall = 0.14,
Precision = 0.04, and Accuracy = 0.87. This result is
plotted in the point (0.10, 0.15) in the ROC space, which
describes a conservative prediction. As can be noticed, a
standard GP produces a single prediction for every data
set. In contrast, EDR provides a range of classifications,
which allows the investors to tune the prediction according
to their risk guidelines. If the requirement of the user is to
detect as many positive cases as possible, τ has to decrease
to move to the liberal part in the ROC space. In contrast,
if the user′s preference is to reduce the risk, then τ has to
increase to move to the conservative part in the graph. It
is noted that the recall declines when τ increases because
the selection of rules becomes stricter and fewer rules are
selected, decreasing the number and variety of the rules in
the repository. Note that all the results provided by EDR
have better recall than the recall of the best GP individual.
The result of the standard GP is plotted in (0.10, 0.15) in
the ROC space which describes a conservative prediction.
The EDR predictions have been distributed along the ROC
curve. This allows investors to choose among a range of
options the most suitable prediction for their requirements.
According to the experimental results, it was possible to
detect from 23% to 78% of the positive cases with an ac-
curacy higher than 78%. The GP has better accuracy than
the majority of the choices in EDR because the GP tends
to predict negative classification, which has a high chance
of being correct. The experiment shows that EDR is able
to pick out rules that together classify more positive cases.

RM comparison. The result provided by RM and EDR
is a set of classifications, which are distributed in the ROC
space. Thus, we use the area under the ROC curve (AUC)
to compare the performance of the classifiers. AUC ob-
tained by RM is 0.77, which is outperformed by AUC gen-
erated by EDR (0.81).

4.2 Experiment to test different levels of
complexity

4.2.1 Objective

The objective of this experiment is to test EDR using
two data sets with different levels of complexity and a data
set whose signal was labeled at random, which means that
it does not have any pattern.

4.2.2 Procedure

We do not have a formal definition about rule complex-
ity. However, for simplicity we measure the complexity of
the data sets for the number of conditions involved in the
solution. When the number of conditions in the solution in-
creases, the solution is more complex. To control the com-
plexity of the data sets in the experiment, we created three
artificial data sets. The data set Artificial1 was generated
as follows:

Step 1. A set of 1 200 records was generated, every record
held eight independent variables with real values. Ev-
ery variable was randomly generated in a range of
[0, 1].

Step 2. Every record was labeled with a class (positive or
negative). The records that meet the requirements in
at least one of the rules in S1, as shown in (1) below,
is labeled as positive, otherwise the record is classified
as negative.

Step 3. The data was split in two data sets (training and
testing) holding the same number of records (600).

The second artificial data set Artificial2 was created re-
peating the above Steps 1–3 , but using S2 instead of S1.
And the third data set (Artificial3) was created using S3

in (1).

S1 = { R1 = var1 > 0.99

R2 = var2 < 0.009

R3 = var5 < 0.898 and var5 > 0.89

R4 = var5 < 0.01

R5 = var6 > 0.88 and var6 < 0.89 }

S2 = { R1 = var1 > 0.5 and var1 < 0.58 and
var2 > 0.5 and var3 < 0.7 and var4 <
var3

R2 = var3 < 0.45 and var3 > var2 and
var3 > var4 and var3 > var5 and
var3 > var6

R3 = var8 < 0.898 and var8 > 0.86 and
var5 > 0.065 and var5 < 0.35 and
var3 > var7

R4 = var1 > 0.5 and var1 < 0.58 and
var2 > 0.5 and var3 < 0.7 and var4 <
var3 and var4 < var6

R5 = var6 > 0.56 and var7 > var6 and
var8 > var6 and var8 < var1

R6 = var1 > var7 and var1 > var6 and
var6 < 0.23 and var5 < var6}

S3 = Random selection (1)

4.2.3 Observation

Before starting the analysis of the results in the testing
data sets, let us present the results obtained by EDR in
the training data set for each of the experiments. Using
Artificial1 AUC = 0.99, Artificial2 AUC = 0.90 and
Artificial3 AUC = 0.91. Fig. 2 shows the results using
three artificial data sets. The values of the corresponding
artificial data set are listed in Table 3. As can be observed
in all cases, EDR captured patterns from the training data
sets. However, let us analyze the results in the testing data
sets.
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Fig. 2 Results using three artificial data sets (easy, difficult, and

random)

Table 3 The values of artificial data sets

Notations Values

Training data set Number of examples : 600

Positive examples (Artificial1) 28 (4.6%)

Positive examples (Artificial2) 18 (3%)

Positive examples (Artificial3) 18 (3%)

Testing data set Number of examples 600

Positive examples (Artificial1) 29 (4.8%)

Positive examples (Artificial2) 29 (2.8%)

Positive examples (Artificial3) 18 (3%)

Number of runs 20

Artificial1 AUC 0.81

Artificial2 AUC 0.79

Artificial3 AUC 0.43

EDR parameters Precision threshold (PT ) 6%

Population size (ρ) 1000

Number of initial spring (ϕ) 10

Individuals at random (β) 15%

Max number of rules (µ) 2000

Number of generations 30

Hill-climbing probability 15%

Artificial1. According to our definition of complexity,
Artificial1 is a data set that has a low level of complexity.
As can be observed from Fig. 2, AUC obtained by EDR
is 0.81. Surprisingly, EDR does not offer any conservative
prediction as can be noticed in Table 4. However, EDR
found classifications that detect 70% of the positive cases
with accuracy of 80% when τ > 0.85. On the other hand,
when τ decreases, the detection of positive cases increases
steadily as the number of false alarms.

Table 4 EDR results using Artificial1 data set

τ Recall Precision Accuracy τ Recall Precision Accuracy

1.00 0.70 0.15 0.80 0.50 0.84 0.10 0.65

0.95 0.70 0.15 0.80 0.45 0.85 0.11 0.65

0.90 0.70 0.15 0.80 0.40 0.87 0.09 0.59

0.85 0.70 0.15 0.80 0.35 0.92 0.09 0.54

0.80 0.72 0.15 0.80 0.30 0.94 0.08 0.47

0.75 0.74 0.15 0.78 0.25 0.98 0.07 0.37

0.70 0.74 0.15 0.78 0.20 0.98 0.06 0.27

0.65 0.76 0.13 0.74 0.15 1.00 0.05 0.08

0.60 0.77 0.12 0.72 0.10 1.00 0.05 0.05

0.55 0.77 0.12 0.72 0.05 1.00 0.05 0.05

Artificial2. Artificial2 is more complex than the previ-
ous data set. As can be observed from Fig. 2, AUC obtained
by EDR is 0.79. It means that the performance of EDR in
Artificial1 was slightly better than in Artificial2. As can
be observed in the ROC curve, EDR was unable to classify
a small part of the positive cases. Those cases were classi-
fied just when τ was really low. Table 5 shows the results
using Artificial2 data set. To explain this phenomenon,
the data set was analyzed, and it was discovered that rule
R3 ∈ S2 produces a single positive case in the testing data
set but it did not generate any positive case in the training
data set. This means that the instance was not identified
because there was no pattern to train EDR.

Table 5 EDR results using Artificial2 data set

τ Recall Precision Accuracy τ Recall Precision Accuracy

1.00 0.65 0.14 0.88 0.50 0.81 0.06 0.64

0.95 0.65 0.14 0.88 0.45 0.82 0.06 0.63

0.90 0.65 0.14 0.88 0.40 0.86 0.05 0.55

0.85 0.66 0.14 0.88 0.35 0.86 0.05 0.49

0.80 0.67 0.14 0.87 0.30 0.87 0.04 0.44

0.75 0.69 0.12 0.85 0.25 0.88 0.04 0.35

0.70 0.69 0.12 0.85 0.20 0.89 0.03 0.26

0.65 0.77 0.08 0.73 0.15 0.92 0.03 0.11

0.60 0.78 0.07 0.71 0.10 0.92 0.03 0.10

0.55 0.78 0.07 0.70 0.05 0.92 0.03 0.10

Artificial3. As was explained previously, this data set
was labeled randomly. This means that there are no pat-
terns in the training data set to identify similar cases in
future data sets. As was expected, EDR gathered patterns
from the training data set, but these were not repeated
in the testing data set. Table 6 shows the results using
Artificial3 data set. Fig. 2 shows the ROC curve plotted
by EDR using Artificial3. As can be seen, AUC obtained
is 0.43, the performance of EDR was very low. EDR pro-
duced a random classification because the patterns in the
training data set were not representative of the examples
in the testing data set. The main reasons to get a low per-
formance in a classifier based on supervised learning can be
summarized as follows:

1) The data set does not contain any patterns or the in-
dependent variables do not describe the behavior of
the data set;

2) The signal in the data set is labeled incorrectly;

3) The patterns in the training data set do not repeat in
the testing data set.

The general observation of this experiment is that EDR is
able to discover patterns to classify rare cases in imbalanced
data sets. However, it is necessary to provide a represen-
tative training data set to capture the patterns to predict
future cases. The complexity of the rules does not seem
to affect seriously the performance of EDR. However, more
research needs to be done about this.
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Table 6 EDR results using Artificial3 data set

τ Recall Precision Accuracy τ Recall Precision Accuracy

1.00 0.14 0.02 0.81 0.50 0.24 0.02 0.66

0.95 0.14 0.02 0.81 0.45 0.24 0.02 0.66

0.90 0.14 0.02 0.81 0.40 0.25 0.02 0.64

0.85 0.14 0.02 0.81 0.35 0.25 0.02 0.63

0.80 0.14 0.02 0.81 0.30 0.37 0.02 0.52

0.75 0.14 0.02 0.81 0.25 0.46 0.02 0.41

0.70 0.14 0.02 0.81 0.20 0.55 0.02 0.32

0.65 0.15 0.02 0.79 0.15 0.90 0.03 0.09

0.60 0.15 0.02 0.79 0.10 0.90 0.03 0.09

0.55 0.15 0.02 0.79 0.05 0.90 0.03 0.09

4.3 An illustrative example to analyze a
set of decision rules produced by EDR

4.3.1 Objective

This section analyzes a set of decision rules that were pro-
duced by EDR. The objective of this study is to show how
a bigger collection of rules can help to detect the minority
class in imbalanced environments.

4.3.2 Procedure

The example was taken from Barclays, where the training
and the testing data sets are composed by 400 records each.
The training data set has 15 positive examples, while the
testing has 13. The set of rules for this analysis achieved
a precision of 1 in the training data set, the set of rules
is displayed in Table 7. As can be seen from Table 8,
the complete set of rules classifies eight positive instances
(Recall = 53%) in the training data set. As can be ob-
served, every rule classifies three or four instances each.
Given that the precision of the rules was 1, it means that
the rules do not classify any negative case. Obviously, there
is overlapping in the classification. However, an important
question arises here. Is it useful to keep a collection of rules
that overlap their predictions? This question is relevant
because this will support one of the main claims of this
method.

4.3.3 Observations

Let us analyze the set of rules in Table 7. Because the
novelty is a basic condition to be included in the repos-
itory, notice that rules contain common conditions, but
there are no identical rules. However, there is overlapping
in the classification and even identical classification in rules
R6, R7, R8, R9 and in rules R11, R14, R15, and R17. It means
that the genotype is different, but the phenotype is similar.
Obviously, we are taking as the phenotype the behavior of
the rule. In the mentioned cases, the rules produced the
same results. Let us analyze in detail the conditions and
variables that are involved in each set of rules.

Table 7 Set of rules for the example in Section 4.3

Rule Rule description Detections

R1 var9 > var15 and var10 < var17 and var7 >

0.0727

4

R2 var3 > var24 and var6 < var7 and var21 >

var24

4

R3 var3 > var20 and var13 < −527.9 4

R4 var3 > var18 and var6 > var13 and var9 <

var18 and var21 > var24

4

R5 var3 > var24 and var6 < 0.0413 4

R6 var3 > var18 and var11 < −0.5056 4

R7 var4 > var15 and var10 < var17 and var7 >

0.0727

4

R8 var10 < var17 and var15 < var22 and

var7 > 0.0727

4

R9 var10 < var17 and var15 < var20 and

var7 > 0.0727

4

R10 var1 < var21 and var2 < var21 and var3 >

var21 and var24 < 0.0136

3

R11 var8 > var13 and var7 > 0.0727 and

var12 > −1082.

3

R12 var10 < var20 and var15 < var23 and

var7 > 0.0727

3

R13 var10 < var21 and var6 < 0.0936 and

var22 < −0.067

3

R14 var7 > 0.0727 and var12 > −1082. and

var13 < −0.160

3

R15 var4 < −0.213 and var7 > 0.0727 and

var12 > −1185.

3

R16 var10 < var20 and var15 < var20 and

var7 > 0.0727

3

R17 var1 < −0.072 and var5 > 0.0445 3

Table 8 Positive instances classified in the training data set

Positive instance correctly predicted

Rule e1 e2 e3 e4 e5 e6 e7 e8 Sum

R1 X X X X 4

R2 X X X X 4

R3 X X X X 4

R4 X X X X 4

R5 X X X X 4

R6 X X X X 4

R7 X X X X 4

R8 X X X X 4

R9 X X X X 4

R10 X X X 3

R11 X X X 3

R12 X X X 3

R13 X X X 3

R14 X X X 3

R15 X X X 3

R16 X X X 3

R17 X X X 3

Sum 4 12 14 3 5 9 9 4
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Let Sa = {R6, R7, R8, R9} be the set of rules. As was
expected, Sa holds a set of different rules because EDR
provides a mechanism to select different patterns, avoiding
repeating the same rules in the repository (see Section 3.2).
However, it is important to analyze the variables and rela-
tions that are involved in each rule in order to determine if
those rules could be correlated.

As can be seen from Table 7, R6 is different from the
other rules in Sa, because R6 does not have any equal
hard condition or similar condition with another rule in
Sa. On the other hand, R7, R8, and R9 share the condi-
tions: var10 < var17 and var7 > 0.0727, as the following
paragraph shows

R6 = var3 > var18 ∧ var11 < −0.5056

Common conditions

R7 = var4 > var15 ∧
︷ ︸︸ ︷
var10 < var17 ∧ var7 > 0.0727

R8 = var15 < var22 ∧ var10 < var17 ∧ var7 > 0.0727

R9 = var15 < var20︸ ︷︷ ︸ ∧ var10 < var17 ∧ var7 > 0.0727 .

Different

condition

Let Rc be the rule that is formed by the common condi-
tions in R7, R8 and R9 thus Rc = {var10 < var17 ∧ var7 >
0.0727}. A new evaluation was performed using Rc, the
result was TP = 4, FP = 15, FN = 11, and TN = 370,
where TP , FP , FN , and TN denote true positive, false
positive, false negative, and true negative, respectively. It
means that rules R7, R8 and R9 are more specialized than
Rc, because Rc classifies 15 false alarms.

Given that var15 is involved in different conditions in
R7, R8, R9, it is important to verify if the other variables
(var22 and var20) are correlated and if var4 is inversely
correlated to var22 and/or var20. As can be seen from Table
9, the indicators are: var4 = Price trading breaking rule 50
days, var20 = LIBOR: 3 months moving average 50 days,
and var22 = UK01Y00MA moving average 50 days. At
this point, the financial and technical analysis knowledge
of the user is crucial to determine the conditions in the
rules. Now, let us analyze the following set of rules: Sb =
{R11, R14, R15, R17}.

Obviously, Sb holds a set of different rules. However, it
is important to analyse the variables and relations that are
involved in each rule to determine if those rules could be
correlated. As can be seen from Table 7, R17 is different
from the other rules in Sb. This is because R17 does not
have any equal hard condition or similar condition with
another rule in Sb. On the other hand, R11, R14, and R15

have in common the conditions: var7 < 0.0727 and var12 >
Threshold, where Threshold ∈ [−1185,−1082], as shown
below.

R17 = var1 < −0.072 ∧ var5 > −0.0445

Common conditions

R11 = var8 < var13 ∧
︷ ︸︸ ︷
var7 > 0.0727 ∧ var12 > −1082

R14 = var13 < −0.16 ∧ var7 > 0.0727 ∧ var12 > −1082

R15 = var4 < −0.213︸ ︷︷ ︸ ∧ var7 > 0.0727 ∧ var12 > −1185.

Different

condition

Let Rd be the rule that is formed by the common con-
ditions in R11, R14, and R15 thus Rc = {var7 > 0.0727 ∧
var12 > −1185}. A new evaluation was performed using
Rd, the result was TP = 3, FP = 11, FN = 12, and
TN = 374. It means that R11, R14, and R15 are more
specialized than Rd because these do not classify any false
alarm as Rd does. R11 differs because of the condition
var8 < var13 where price volatility of 50 days is bigger
than moving average of 10 days of the momentum indicator
of 10 days. The fact that R11 and R14 classify the same
instances in the testing data set could suggest a correlation
between them. Finally, it is important to verify if var4 and
var13 are correlated. As can be seen in Table 9, the in-
dicators are: var4 = Price trading breaking rule 50 days,
var12 = Momentum indicator 60 days.

Table 9 The values of variables

Variables Values

var1 Price moving average 12 days

var2 Price moving average 12 days

var3 Price trading breaking rule 5 days

var4 Price trading breaking rule 50 days

var5 Filter rule 5 days

var6 Filter rule 63 days

var7 Price volatility 12 days

var8 Price volatility 50 days

var9 Volume moving average 10 days

var10 Volume moving average 60 days

var11 Momentum indicator 10 days

var12 Momentum indicator 60 days

var13 Momentum 10 days moving average 10 days

var14 Momentum 60 days moving average 60 days

var15 Generalized momentum indicator 10 days

var16 Generalized momentum indicator 60 days

var17 FOOTSIE moving average 12 days

var18 FOOTSIE moving average 50 days

var19 LIBOR: 3 months moving average 12 days

var20 LIBOR: 3 months moving average 50 days

var21 UK01Y00 moving average 12 days

var22 UK01Y00MA moving average 50 days

var23 UK10Y00MA moving average 12 days

var24 UK10Y00MA moving average 50 days

There is a great variety of decision trees that can be
formed with a subset of rules in Table 7 that does not clas-
sify any positive case in the testing data set, for example:

Ta = {R2, R4, R17}
Tb = {R1, R5, R15}
Tc = {R3, R4, R11}.

As can be seen in Table 10, Ta, Tb, and Tc are not able to
classify any positive case in the testing data set. However,
if we evaluate the fitness of Ta, Tb, and Tc using the train-
ing data set, the performance is equal to the complete set
of rules in Table 7, because every rule has Precision = 1.
It means that the classification in the training data set for:
Ta = Tb = Tc = {TP = 8, FP = 0, FN = 5 and TN =
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387}. However, in the testing data set, Ta, Tb, and Tc do
not classify any positive example. There are many classi-
fier systems based on GP which claim to evolve a sets of
rules. These calculate the fitness of the individual by mea-
suring the result of the classification and the “simplicity”
of the solutions, as an instance[23, 24, 30, 31]. Other works
just divide the resulting decision tree in rules, for example
[22]. In those cases the GP is favoring the shortest solutions
as Ta, Tb, and Tc instead of a bigger tree that hold more
rules. On the other hand Yin et al.[32] create a set of rules
using GP discarding rules to find the minimal set of rules.
That procedure was implemented to reduce the bloat in the
evolutionary process.

Table 10 Positive instances classified in the testing data set

Positive instance correctly predicted

Rule e1 e2 e3 Sum

R1 0

R2 0

R3 0

R4 0

R5 0

R6 X 1

R7 0

R8 0

R9 0

R10 0

R11 X 1

R12 0

R13 X 1

R14 X 1

R15 0

R16 0

R17 0

Sum 2 1 1

5 Conclusions

In this paper, we have explained the EDR approach. This
method was designed to classify the minority class in im-
balanced data sets. The system′s output is a set of decision
rules, which based on a threshold τ produces a range of clas-
sifications to suit the investor’s preferences. For detailed
analysis, we have used the ROC curve, which has helped to
visualize the distribution of the classifications in the ROC
space. In the same vein, we have used the area under the
ROC curve (AUC) to measure the general performance of
our approach and to compare this with the RM proposed
in [10, 16, 27] and a standard GP.

The core of our approach is based on GP, which is aided
by a repository of rules. The aim of this repository is to
collect useful patterns that are used to produce the follow-
ing population in the evolutionary process. The main op-
erators of EDR are the mutation and hill-climbing, which
produce instances of the collected patterns. Furthermore,
a simplification process is performed to simplify the rules
in the repository in order to produce understandable solu-
tions. On the other hand, the removal of extra-code allows
us to decrease the computational effort.

From experimental results in Section 4.1, it was observed
that EDR produces a series of classifications to adapt to the
user needs (from conservative to liberal predictions).

An illustrative example was analyzed in Section 4.3 to
explain how a bigger collection of rules is able to classify
more positive cases in imbalanced environments. As it can
be observed from this example, EDR produces comprehen-
sible rules that can be analyzed by the user to understand
the conditions and variables in the rule. Thus, the users can
combine their knowledge to make a more informed decision.
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