
International Journal of Automation and Computing 04(4), October 2007, 359-368

DOI: 10.1007/s11633-007-0359-y

Considering the Fault Dependency Concept with

Debugging Time Lag in Software Reliability Growth

Modeling Using a Power Function of Testing Time

V. B. Singh1,∗ Kalpana Yadav2 Reecha Kapur3 V. S. S. Yadavalli4
1 Delhi College of Arts and Commerce, University of Delhi, Delhi 110 023, India

2 Indira Gandhi Institute of Technology, Guru Gobind Singh Indraprastha University, Delhi 110 006, India
3 Department of Mathematics and Computer Application, Bundelkhand University, Jhansi 284 128, India
4 Department of Industrial and Systems Engineering, University of Pretoria, Pretoria 0002, South Africa

Abstract: Since the early 1970s tremendous growth has been seen in the research of software reliability growth modeling. In general,

software reliability growth models (SRGMs) are applicable to the late stages of testing in software development and they can provide

useful information about how to improve the reliability of software products. A number of SRGMs have been proposed in the literature

to represent time-dependent fault identification / removal phenomenon; still new models are being proposed that could fit a greater

number of reliability growth curves. Often, it is assumed that detected faults are immediately corrected when mathematical models

are developed. This assumption may not be realistic in practice because the time to remove a detected fault depends on the complexity

of the fault, the skill and experience of the personnel, the size of the debugging team, the technique, and so on. Thus, the detected

fault need not be immediately removed, and it may lag the fault detection process by a delay effect factor. In this paper, we first

review how different software reliability growth models have been developed, where fault detection process is dependent not only on

the number of residual fault content but also on the testing time, and see how these models can be reinterpreted as the delayed fault

detection model by using a delay effect factor. Based on the power function of the testing time concept, we propose four new SRGMs

that assume the presence of two types of faults in the software: leading and dependent faults. Leading faults are those that can be

removed upon a failure being observed. However, dependent faults are masked by leading faults and can only be removed after the

corresponding leading fault has been removed with a debugging time lag. These models have been tested on real software error data

to show its goodness of fit, predictive validity and applicability.

Keywords: Non-homogeneous Poisson process, fault dependency, leading fault, dependent fault, delay effect.

1 Introduction

The role of software is expanding rapidly in modern soci-

ety. Hence, quality, reliability, and customer satisfaction

become the main goals for software engineers and very

important considerations for software development orga-

nizations. Testing is the major quality control used dur-

ing software development. It not only uncovers errors

introduced during coding, but also removes errors intro-

duced during the previous phases. To improve the software

quality, software reliability engineering plays an important

role throughout the entire software development life cycle

(SDLC).

Software reliability is the probability that the software

will provide failure-free operations in a fixed environment

for a fixed interval of time[1]. The future failure behavior

of a software system is predicted by studying and modeling

its past failure behavior. How to enhance the reliability of

the software systems and reduce the cost to an acceptable

level becomes the main focus of the software industry[2].

A software reliability growth model (SRGMs) provides a

mathematical relationship between the number of faults re-

moved and the testing time (CPU time or calendar time)

for the purpose. Many SRGMs have been developed and

Manuscript received September 27, 2006; revised June 20, 2007
*Corresponding author. E-mail address: singh vb@rediffmail.com

widely used for the past several decades that assess software

reliability during testing[3−8] with the assumption that the

number of faults detected at any time instant is propor-

tional to the remaining number of faults in the software.

In Section 4.1 we will review a class of software reliabil-

ity growth models[9, 10] based on non-homogeneous Poisson

process (NHPP), where fault detection process is depen-

dent not only on the number of residual fault content but

also on testing time. In many software reliability growth

models, it has been assumed that the detected faults are

immediately removed, which is not in real practice. The

time to remove a detected fault depends on the complexity

of the fault, the skill and experience of the debugging team,

the available manpower, the software development environ-

ment, and so on. Thus, the time delay between the fault

detection and correction processes should not be negligible.

Besides, during testing, mutually independent faults can

be directly detected and removed, but mutually dependent

faults can be removed iff the leading faults were removed.

In Section 4.2 we discuss the fault detection and correction

process by using a delay effect factor.

There is a class of NHPP models that assume that faults

present in the software are of different types. From our stud-

ies, we found that many researchers categorize the faults

with respect to the level of difficulty and time taken for



360 International Journal of Automation and Computing 04(4), October 2007

removal[7, 11]; others do so by distinguishing the means of

fault identification[4, 6, 12]. Ohba[12] proposed an inflection

S-shaped model to describe the software failure occurrence

phenomenon with mutual dependency of faults. He visual-

ized that an exponential SRGMs was sometimes insufficient

and inaccurate to analyze actual software failure data for

reliability assessment. In fact Ohba categorize the faults as

independent and dependent faults. Dependent faults can

be removed only after some faults (independent faults) ly-

ing on that path are detected. Kapur and Garg[4] assumed

that more faults could be removed during the checking of

code for identification of the cause of a failure. It is a fact

that different categories of faults exist in a software. In

this paper, we develop several SRGMs by modifying the

above assumption. We assume that two types of faults ex-

ist in a software, i.e., leading faults and dependent faults.

Leading faults are those that cause failure, and dependent

faults are detected upon identification of leading faults. The

model is developed as a two-stage process. This type of

modeling was done first by Kapur and Younes[6]. Following

their work, Kapur et al.[13] incorporated time-dependent lag

function into the second stage, i.e., modeling of a dependent

fault detection process. Huang et al.[14] also proposed sev-

eral SRGMs that incorporate different time-dependent lag

functions during modeling of a dependent fault detection

process.

The structure of this paper is organized as follows. Sec-

tion 2 gives the description of the model assumptions. In

Section 3.1 we review a class of NHPP models proposed

by Kapur et al.[9, 10] by considering the concept of power

function of testing time, and a fault detection and correc-

tion process by using delay effect factor explained in Section

3.2. In Section 3.3 we propose four models, which incorpo-

rate the fault dependency concept with various debugging

time lag using a power function of testing time. We de-

scribe data sets cited in the literature, comparison criteria,

description of tables, parameter results and goodness of fit

curves in Section 4. Finally, Section 5 concludes this paper

and indicates future research prospects.

Notation

m(t) : Value function of the expected number of de-

tected/removed faults in the time interval [0, t].

mf (t) : Value function of the expected number of ob-

served/detected faults in the time interval [0, t].

mr(t) : Value function of the expected number of re-

moved faults in the time interval [0, t].

m1(t) : Value function of the expected number of leading

faults.

m2(t) : Value function of the expected number of depen-

dent faults.

a, k : Constants, represents initial fault content and

power of time, respectively.

β : Constant.

e(t) : Expected number of instructions executed in the

time interval [0, t].

a1 : Total number of independent faults.

a2 : Total number of dependent faults.

b : Fault detection rate of independent faults.

c : Faults detection rate of dependent faults.

P : Proportion of leading faults.

∆t : Delay effect factor.

2 Basic assumptions

If we define the expected number of faults, N(t), whose

mean value function is known as m(t), then an SRGMs

based on NHPP can be formulated as a Poisson process:

Pr {N(t) = n} =
(m(t))n

n!
exp (−m(t)) , n = 0, 1, 2 (1)

where m(t) =
R t

0
λ(x)dx.

The intensity function λ(x) (or the mean value function

m(t)) is the basic building block of all the NHPP models

existing in the software reliability engineering literature.

The proposed model is based on the following assump-

tions.

Assumption 1. Software is subject to failures at ran-

dom times caused by errors remaining in the software.

Assumption 2. The fault removal process follows an

NHPP.

Assumption 3. Identified faults are removed perfectly.

No additional faults are introduced during the removal pro-

cess.

Assumption 4. Number of faults removed is a function

of number of instructions executed.

Assumption 5. The number of instructions executed is

a power function of testing time.

Assumption 6. All detected faults can be categorized as

either leading faults or dependent faults. The total number

of faults is finite.

Assumption 7. The mean number of leading faults

detected in the time interval [t, t + ∆t] is proportional to

the mean number of remaining leading faults in the system.

Assumption 8. The mean number of dependent faults

detected in the time interval [t, t + ∆t] is proportional to

the mean number of remaining dependent faults in the sys-

tem and to the ratio of leading faults removed at time t to

the total number of leading faults.

Assumption 9. The detected dependent faults may not

be immediately removed, and it lags the fault detection

process by a delay effect factor ∆t.

3 Software reliability growth modeling

In this section, we review software reliability growth

models developed with a different approach where the fault

detection process is dependent not only on the number of

residual fault content but also on testing time. We also

describe the fault detection and removal process and see

how these models can be alternatively derived using a de-

lay effect factor. Finally, in this section, we propose the

fault dependency concept with various debugging time lag

in software reliability growth modeling using a power func-



V. B. Singh et al./ Considering the Fault Dependency Concept with Debugging Time Lag in Software Reliability · · · 361

tion of testing time.

3.1 A general NHPP model

In the literature, many software reliability growth mod-

els have been developed with the assumption that the fault

detection process depends only on residual fault contents.

However, in the following, we will review some software reli-

ability growth models which have been developed with the

assumption that the fault detection process is dependent

not only on the number of residual fault content but also

on the testing time.

3.1.1 A general NHPP model

During testing, instructions are executed on the software

and the output is matched with the expected results. If

there is any discrepancy a failure is said to have occurred.

Effort is made to identify and remove the cause of the fail-

ure.

On the basis of Assumptions 4 and 5, the failure / re-

moval phenomenon can be described with respect to time

as follows:
dmr(t)

dt
=

dmr(t)

de(t)

de(t)

dt
. (2)

Each component of the right hand side of the above expres-

sion is described in (3) and (4) respectively.

The rate at which failures occur depends upon the num-

ber of faults remaining in the software. Based on this as-

sumption the differential equation for fault removal can be

written as
dmr(t)

de(t)
= k1 (a−mr(t)) . (3)

k1 is the rate at which residual faults cause failure. It is a

constant as each one of the faults has an equal probability

of causing failure.

The second component of (2) relates the number of in-

structions executed with testing time. In [9, 10], this com-

ponent has been taken as a power function of testing time.

de(t)

dt
= k2t

k (4)

here, k ≥ 0. The form given in (4) is more general and

flexible in nature, and it represents different types of rela-

tionships between e and t depending on different values of

k.

Substituting (3) and (4) in (2) we get

dmr(t)

dt
= k1k2 (a−mr(t)) tk. (5)

Solving (5) with initial condition mr(0) = 0 we get

mr (t) = a

„
1− exp

„
− b

k + 1
t(k+1)

««
(6)

here, b = k1k2. If k = 0 the above model reduces to a G-O

model[3].

We may also write the above-described SRGMs in the

following form

dmr(t)

dt
= b(t) (a−mr(t))

where b (t) = btk. Then by solving for mr(t) we get (6).

In the above discussion, it has been assumed that the

detected faults are immediately removed. The mean value

function of detected faults as in (6) can be taken as a failure

observation / fault detection phenomenon, i.e.,

mf (t) = a

„
1− exp

„
− b

k + 1
t(k+1)

««
. (7)

3.1.2 Yamada delayed s-shaped model using

power function of testing time proposed by

Kapur[10]

In this model, a realistic assumption has been made that

actual removal of a fault is done after a failure is observed

and corresponding fault is isolated. Hence, the removal is

done in two steps. In the first step, the failure identification

team isolates a failure. In the second step, another team

removes the fault causing that failure. Yamada et al.[8]

has developed an s-shaped SRGMs taking into account the

time lag between the two stages, i.e., failure and removal by

defining the failure observation and fault removal rates as

a constant b. In this model, the rate of failure observation

and their corresponding removal has been taken as a power

function of testing time, i.e., b(t) = btk.

Let us define:

dmf (t)

dt
= btk(a−mf (t))

and
dmr(t)

dt
= b tk(mf (t)−mr(t))

where mf (t) denotes the number of failures observed in time

t whereas mr(t) represents the number of faults removed in

time t.

Solving the above two equations with the initial condition

m f (0) = m r(0) = 0, we get

mr(t) = a

„
1−

„
1 + b

tk+1

k + 1

«
exp

„
−b

tk+1

k + 1

««
. (8)

Here, if k = 0, then it reduces to a Yamada S-shaped

model[8].

3.1.3 K-3 stage-model using power function of

testing time proposed by Kapur et al.[10]

This model was proposed by Kapur et al.[10] and in this

model it has been assumed that software testing and de-

bugging consists of three different processes: failure obser-

vation, fault isolation and fault removal. The time lag be-

tween the failure observation and fault isolation / removal

represents the severity of the fault. The harder the fault,

the longer is the time lag, and rate has been taken as a

power function of testing time.

Let us define:

dmf (t)

dt
= btk(a−mf (t))

dmi (t)

dt
= btk(mf (t)−mi (t))

dmr (t)

dt
= btk(mi (t)−mr (t)).



362 International Journal of Automation and Computing 04(4), October 2007

Solving the above three equations with the initial condition

mf (0) = mi(0) = mr(0) = 0, we get

mr(t) = a

 
1−

 
1 + b

tk+1

k + 1
+

b2

2

„
tk+1

k + 1

«2
!

exp

„
−b

tk+1

k + 1

««
.

(9)

Now if k = 0, then it reduces to a Kapur 3-stage model[11].

3.1.4 Kapur–Garg model using power function of

testing time proposed by Kapur[10]

This model was proposed by Kapur et al.[10] and it has

been assumed that the rate at which failures occur depends

not only upon the number of faults remaining in the soft-

ware but also on the proportion of faults already detected.

Based on this assumption the differential equation for fault

identification / removal can be written as

dmr (t)

de (t)
= (k1 + k2

mr (t)

a
) (a−mr (t)) (10)

where k1 is the rate at which residual faults cause failure. It

is a constant as each one of these faults has an equal prob-

ability of causing failure. k2 is the rate at which additional

faults are identified without their causing any failure.

Let the second component of (2) be defined as a power

function of testing time:

de (t)

dt
= k3t

k. (11)

Substituting (10) and (11) in (2) we have

dmr(t)

dt
= k3t

k

„
k1 + k2

mr (t)

a

«
(a−mr (t)).

It is a first order differential equation. Solving it with the
initial condition mr(0)= 0 we get

mr(t) = a

0
BBB@

1− exp

„
−b

tk+1

k + 1

«

1 + β exp

„
−b

tk+1

k + 1

«

1
CCCA (12)

where b = k3(k1 + k2) and β = (k2/k1).

If we have k = 0, then it is the same as the Kapur-Garg

model[4].

3.2 Modeling of fault detection and re-
moval process

In Section 3.1.1, we have discussed a model with the as-

sumption that the detected faults are immediately removed

and the mean value function is given by (6). But from a

practical point of view, the assumption that detected faults

are immediately removed may not be suitable in an actual

software environment. However, it lags the fault detection

process by a delay effect factor ∆t. We will discuss in this

section how existing software reliability growth models de-

scribed in Sections 3.1.2–3.1.4 can be reinterpreted as the

delayed fault detection models.

From the modified assumption and using (7), the mean

value function is given by

mr (t) = mf (t−∆t) (13)

mr (t) = a

„
1− exp

„
− b

k + 1
(t−∆t)

(k+1)
««

. (14)

3.2.1 Goel–Okumoto model using power function

of testing time proposed by Kapur[9, 10]

This model has been reviewed in Section 3.1.1 and can

be reinterpreted as the delayed fault detection model. If we

consider that there is no lag between fault detection and

their corresponding removal, i.e., ∆t = 0 in (14), we have

mr (t) = a

„
1− exp

„
− b

k + 1
t(k+1)

««
. (15)

3.2.2 Yamada delayed s-shaped model using the

power function of testing time proposed by

Kapur[10]

This model has been reviewed in Section 3.1.2 and can

be reinterpreted as the delayed fault detection model. If

we consider that there is a time lag between fault detection

and its corresponding removal, i.e.,

∆t = t−
»
tk+1 − k + 1

b
log

„
1 +

btk+1

k + 1

«– 1
k+1

in (14), we have

mr(t) = a

„
1−

„
1 + b

tk+1

k + 1

«
exp

„
−b

tk+1

k + 1

««
. (16)

3.2.3 K-3 stage-model using power function of

testing time proposed by Kapur[10]

This model has been reviewed in Section 3.1.3 and can
be reinterpreted as the delayed fault detection model. If we
consider that there is time lag between fault detection and
its corresponding removal, i.e.,

∆t = t−
"
tk+1 − k + 1

b
log

 
1 +

btk+1

k + 1
+

b2

2

„
tk+1

k + 1

«2
!# 1

k+1

in (14), we have

mr(t) = a

 
1−

 
1 + b

tk+1

k + 1
+

b2

2

„
tk+1

k + 1

«2
!

exp

„
−b

tk+1

k + 1

««
.

(17)

3.2.4 Kapur–Garg model using the power function

of testing time proposed by Kapur[10]

This model has been reviewed in Section 3.1.4 and can
be reinterpreted as the delayed fault detection model. If we
consider that there is time lag between fault detection and
its corresponding removal, i.e.,

∆t = t−

2
6664−

1

b
log

0
BBB@

(1 + β) exp

„
− btk+1

k + 1

«

1 + β exp

„
− btk+1

k + 1

«

1
CCCA

k+13
7775

1
k+1



V. B. Singh et al./ Considering the Fault Dependency Concept with Debugging Time Lag in Software Reliability · · · 363

in (14), we have

mr(t) = a

0
BBB@

1− exp

„
− btk+1

k + 1

«

1 + β exp

„
− btk+1

k + 1

«

1
CCCA . (18)

3.3 Considering fault dependency and de-
bugging time lag in software reliabil-
ity modeling using a power function
of testing time

Here, we assume that two types of faults exist in a soft-

ware, i.e., leading faults and dependent faults. In general,

mutually independent faults are not involved with other

faults, and can be directly detected and removed. Consid-

ering mutual dependent faults, the statements associated

with the observed faults can produce an expected compu-

tation if the leading faults are also removed. Therefore, we

have to analyze the dependencies between faults, i.e., data

dependency and control dependency. For example, let us

consider two statements A and B, if a variable x is defined,

and used in the statement A and B, and x is not redefined

prior to B, then a data dependency exists between them.

On the other hand, if the execution of statement A pre-

vents the execution of statement B, a control dependency

exists between the statements A and B. In the following,

we are explaining the concept of fault dependency by using

a sequential statement, as shown in Table 1.

Table 1 Concept of fault dependency

Correct program Faulty program Remarks

Line Statement (Code) (Code)

10 S-1 x = p + 1 x = p− 1 misusing operator

.

.

.
.
.
.

.

.

.

20 S-2 y = q%2 y = q%5 wrong operand

.

.

.
.
.
.

.

.

.

30 S-3 z = 200%x z = 200/x misusing operator

.

.

.
.
.
.

.

.

.

40 S-4 z1 = x%y z1 = y%x reverse order

It is clear from Table 1 that the left hand side is a correct

program and the right hand side is a faulty program. The

state after execution of line 30 (S-3) will not be corrected

unless the misused operators in statement S-1 and S-3 are

both corrected. Similarly, the definition fault of variable

x in statement S-1 will also spread to statement S-4 (line

40). So it is clear that the removal of the leading fault (mis-

using operator ) in statement S-1 is critical to the perfect

removal of faults in statements S-3 and S-4. Similarly, the

fault dependency concept can be illustrated for repetitive

statement and conditional statement.

In this section we attempt to develop an SRGMs incor-

porating dependency of the errors using a power function

of testing time. From Assumption 6, we have the following

equation:

a = a1 + a2 (19)

where a1 and a2 are the number of leading and dependent

faults respectively.

The proposed model is the mean value function of an

NHPP, i.e., Assumption 2. Let m(t) represent the mean

number of errors removed in time [t, t + ∆t]. The removal

of leading and dependent errors is also assumed to follow

an NHPP. Thus, m(t) can be written as the superposition

of two NHPPs:

m (t) = m1 (t) + m2 (t) (20)

where m1 (t) is the mean value function of the expected

number of leading faults detected in time [0, t] and m2 (t)

is the mean value function of the expected number of de-

pendent faults detected in time [0, t].

Consequently, if the number of detected leading faults

is proportional to the number of remaining leading faults,

i.e., Assumption 7, then we obtain the following differential

equation

dm1 (t)

dt
= btk [a1 −m1 (t)] , a1 > 0, 0 < b ≤ 1. (21)

In the above equation, we used a power function of testing

time, which has been discussed in Section 3.1.

Solving (21) under the boundary condition, i.e., at t = 0,

m1 (0) = 0, we have

m1 (t) = a1

„
1− exp

„
− btk+1

k + 1

««
. (22)

The other forms of removal phenomenon of detected faults

can be found in Section 3.1.

From Assumption 8 and by using the concept of power

function of testing time, which has been discussed in Section

3.1, we have the following differential equation:

dm2(t)

dt
= ctk [a2 −m2 (t)]

m1 (t−∆t)

a1

. (23)

In earlier literature Kapur and Younes[6] assumed that the

mean number of dependent faults detected in the time in-

terval [t, t + ∆t] is proportional to the mean number of re-

maining dependent faults in the system and the ratio of

leading faults removed at time t to the total number of

faults.

Kapur et al.[13] modified the above assumption by taking

the ratio of leading faults removed at time t to the total

number of leading faults. Later, Huang et. al.[14] incorpo-

rated the assumption given by Kapur and Younes[9] in their

modeling. It is important to note that the dependent faults

can be removed only when the leading fault is perfectly

removed with a debugging time lag ∆t.

Here we let

a1 = pa and a2 = (1− p) a, 0 ≤ p ≤ 1. (24)

Using different removal equations discussed in Section 3.1.,

solving (23) with boundary condition t = 0, m2(0) = 0,

and using equation (20), we obtain m (t) as can be seen in

different cases discussed below:



364 International Journal of Automation and Computing 04(4), October 2007

Case 1. (refer to Sections 3.1.1 and 3.2.1)
If ∆t = 0, (20) becomes

m (t) = a

„
1− p exp

»
− btk+1

k + 1

–
− (1− p)

exp

»
− c

b

„
1− exp

»
− btk+1

k + 1

–«
tk+1

k + 1
c

–«
.

(25)

If we take k = 0, ∆t = 0 and incorporate the assumption

described by Kapur and Younes[6] during the modeling of

dependent faults, we get the error dependency model[6].

Case 2. (refer to Sections 3.1.2 and 3.2.2)
If

∆t = t−
»
tk+1 − k + 1

b
log

„
1 +

btk+1

k + 1

«– 1
k+1

(20) becomes

m (t) = a

„
1− p

„
1 +

btk+1

k + 1

«
exp

»
− btk+1

k + 1

–
−

(1− p) exp

»
2c

b

„
1− exp

»
− btk+1

k + 1

–«
−

tk+1

k + 1
c

„
1 + exp

»
− btk+1

k + 1

–«–«
.

(26)

If we take k = 0 and incorporate the assumption described

by Kapur and Younes[6] during the modeling of dependent

faults, the above model reduces to Huang et al. model 1[14].

Case 3. (refer to Sections 3.1.3 and 3.2.3)
If

∆t = t−
"
tk+1 − k + 1

b
log

 
1 +

btk+1

k + 1
+

b2

2

„
tk+1

k + 1

«2
!# 1

k+1

(20) becomes

m (t)=a

 
1−p

 
1+

btk+1

k+1
+

b2

2

„
tk+1

k+1

«2
!

exp

»
−btk+1

k+1

–
−

(1− p) exp

2
664

3c

b

“
1−

“
1 + btk+1

k+1

”
exp

h
− btk+1

k+1

i”

− tk+1

k+1
c
“
1−

“
1− btk+1

2(k+1)

”
exp

h
− btk+1

k+1

i”

3
775

1
CCA .

(27)

Case 4. (refer to Section 3.1.4, 3.2.4)
If

∆t = t−

2
64−1

b
log

0
@

(1 + β) exp
“
− btk+1

k+1

”

1 + β exp
“
− btk+1

k+1

”
1
A

k+1
3
75

1
k+1

(20) becomes

m (t) = a

0
@1− p

(1 + β) exp
“
− btk+1

k+1

”

1 + β exp
h
− btk+1

k+1

i − (1− p)

exp

„
− ctk+1

k + 1

«0
@ 1 + β

1 + β exp
“
− btk+1

k+1

”
1
A

c(1+β)
bβ

1
CCA . (28)

If we take k = 0 and incorporate the assumption described

by Kapur and Younes[6] during the modeling of dependent

faults, the above model reduces to Huang et al. model 2[14].

A summary of NHPP models is shown in Table 2.

Table 2. A summary of NHPP models

Model Mean value function

G-O model[3] m (t) = a (1− exp (−bt))

Yamada-delayed m(t) = a (1− (1 + bt) exp (−bt))

s-shaped model[8]

Kapur-3-stage mr(t) = a

„
1−

„
1 + bt + b2t2

2

«
exp (−bt)

«

model[11]

K-G model[4] m (t) = a
“

1−exp(−bt)
1+β exp(−bt)

”

Error dependency m (t) = a (1− p exp [−bt]− (1− p) ·
model[6] exp

h
pc
b

(1− exp [−bt])− pct
i”

Huang et. al. a (1− p (1 + rt) exp [−rt]− (1− p) ·
model 1[14] exp

h
2pθ

r
(1− exp [−rt])− tpθ (1 + exp [−rt])

i”

Huang et. al. a
“
1− p

(1+ϕ) exp[−rt]
1+ϕ exp[−rt] − (1− p) ·

model 2[14] exp [−ptθ]
“

1+ϕ
1+ϕ exp[−rt]

” pθ(1+ϕ)
rϕ

1
A

4 Parameter estimation and compari-

son criteria

To verify the proposed models that incorporate the con-

cept of fault dependency and various debugging time lag

using a power function of testing time, we estimated the

unknown parameters by using the statistical package for

social sciences (SPSS) software tool based on non-linear re-

gression technique.

4.1 Description of data sets

Data set I. The data is cited from Brooks and

Motley[15]. The fault data set is for a radar system of size

124 KLOC (kilo lines of code) tested for 35 months in which

1 301 faults were identified.

Data set II. The data is obtained from Musa et al.[16].

The software is a real-time command and control system,

which was tested for 92 days (21 weeks). The delivered

object instructions were 21 700 involving 9 programmers;

136 faults were removed during testing.

4.2 Comparison criteria

The performance of an SRGMs is judged by its ability

to fit the past software fault and to predict satisfactorily

the future behavior of the software fault removal process.

Therefore, we use the following comparison criteria.

4.2.1 The mean square fitting error (MSE)[5]

The model under comparison is used to simulate the fault

data. The difference between the estimated values, m(ti)

and the observed values yi is measured by MSE as follows.

MSE =

kP
i=1

(m(ti)− yi)
2

k

where k is the number of observations. The lower the value

of MSE indicates, the less the fitting error is, thus the better

the goodness of fit is.



V. B. Singh et al./ Considering the Fault Dependency Concept with Debugging Time Lag in Software Reliability · · · 365

4.2.2 Coefficient of determination (R2)[5]

This goodness of fit measure can be used to investigate

whether a significant trend exists in the observed failure

intensity. We define this coefficient as the ratio of the sum

of squares (SS) resulting from the trend model to that from

the constant model subtracted from 1.

R2 = 1 − Corrected SS

Residual SS
.

R2 measures the percentage of the total variation about the

mean accounted for the fitted curve. It ranges in value from

0 to 1. Small values indicate that the model does not fit the

data well. The larger R2 is, the better the model explains

the variation in the data.

4.2.3 Bias

The difference between the observation and prediction of

number of failures at any instant of time i is known as PEi

(prediction error). The average of PE is known as Bias.

The lower the value of Bias, the better the goodness of fit

is.

4.2.4 Variation
The standard deviation of prediction error is known as

Variation.

Variation =

s
1

N − 1

X
(PEi − Bias)2.

The lower the value of Variation is, the better the goodness

of fit is.

4.2.5 Root mean square prediction error (RM-

SPE)

It is a measure of closeness with which a model predicts

the observation.

RMSPE =
q`

Bias2 + Variation2
´

4.2.6 Predictive validity criterion[5]

The number of faults removed by time tk can be predicted

by the SRGMs and compared to the reported fault removal,

i.e., yk. The difference between the predicted value m̂(tk)

and the reported value measures the fault in prediction.

The ratio [(m̂(tk)− yk)/yk] is called the relative prediction

error (RPE). If the RPE is negative (positive) the SRGMs is

said to underestimate (overestimate) the fault removal pro-

cess. Portions of the failure data are sequentially chosen

to calculate the RPE. Values close to zero for RPE indi-

cate more accurate prediction, thus more confidence in the

model. Value is acceptable if it is within ±10.

Table 3 (a) shows the estimated parameters of the pro-

posed models and various existing models. It is noted that

for proposed models, i.e., (25) - (28) independent faults are

approximately 52%, 97%, 30%, and 90%, and dependent

faults are approximately 48%, 3%, 70%, and 10%, respec-

tively for data set I.

Table 3 (b) shows the values of different comparison cri-

teria for the proposed models and various existing models.

As can be seen, the proposed models almost provide the

lowest MSE, and the highest R2 when compared with other

existing models. Moreover, the value of other comparison

criteria like bias, variation and root mean square prediction

error are also described in this table. The mean value func-

tion (MVF) of the proposed models provides a good fit to

data set I.

Table 3 (c) shows the value of relative predictive error

(RPE) of the proposed models and various existing models.

As can be seen, the value of the relative predictive error

is much less at different truncation points compared with

other existing models for data set I.

Table 4 (a) shows the estimated parameters of the pro-

posed models and various existing models. It is noted that

for the proposed models, i.e., (25) - (28) independent faults

are 43%, 98%, 98%, and 85% approximately, and dependent

faults are 57%, 2%, 2%, and 15% approximately, respec-

tively for data set II. As seen from the table, the G-O model,

Yamada delayed S-shaped model and K-3 stage model do

not provide good estimates for the value of parameter a.

Table 4 (b) shows the values of different comparison cri-

teria for proposed models and various existing models. As

can be seen, the proposed models almost provide the low-

est MSE, and the highest R2 when compared with other

existing models. Moreover, the value of other comparison

criteria like bias, variation and root mean square predic-

tion error are also described in this table. The MVF of the

proposed models provides a good fit to data set II.

Table 4 (c) shows the value of the relative predictive

error of the proposed models and various existing models.

As seen, the value of relative predictive error is much less

at different truncation points compared with other existing

models for data set II.

4.2.7 Parameter results

Several models are included in Tables 3 and 4. They are

G-O model[3], Yamada-delayed s-shaped model[8], Kapur-3-

stage model[11], K-G model[4], error dependency model[6],

Huang et al. model 1[14], and Huang et. al. model 2[14]. In

Tables 3 and 4, “-” denotes “not applicable”.

Table 3. (a-c) Data set I
(a) Parameter estimates

Model a b c p k β

G-O model 10589 .004 - - - -

Yamada-delayed 1689 .090 - - - -

s-shaped model

Kapur-3-stage model 1449 .166 - - - -

K-G model 1331 .201 - - - 20.16

Error dependency model 1559 .0438 .913 .144 - -

Huang et al. model 1 1414 .094 .819 .314 - -

Huang et al. model 2 1349 .129 .257 .920 - 1.455

Proposed model 1 1325 .013 .021 .525 .775 -

(Equation 25)

proposed model 2 1311 .029 .006 .975 .648 -

(Equation 26)

proposed model 3 1319 .093 .017 .309 .973 -

(Equation 27)

Proposed Model 4 1312 .082 .062 .909 .362 1.747

(Equation 28)



366 International Journal of Automation and Computing 04(4), October 2007

(b) Comparison criteria

Model R2 MSE Bias Variation RMSPE

G-O model .95810 8923.676 18.712 93.945 95.791

Yamada-delayed .98726 2713.172 5.88 52.511 52.839

s-shaped model

Kapur-3-stage .99423 1228.158 -3.442 35.384 35.552

model

K-G model .99904 203.816 -2.147 14.320 14.480

Error dependency .99013 2101 6.676 46.011 46.494

model

Huang et al. .99642 762.83 -5.812 27.395 28.005

model 1

Huang et al. .99920 170.303 1.404 13.164 13.238

model 2

Proposed model 1 .99835 352.261 -3.95 18.616 19.031

(Equation 25)

Proposed model 2 .99813 397.9859 0.046 20.241 20.241

(Equation 26)

Proposed model 3 .99779 471.255 0.049 22.025 22.025

(Equation 27)

Proposed model 4 .99967 70.228 0.248 8.499 8.503

(Equation 28)

(c) Relative predictive error (RPE)

Model 100% 90% 80% 70%

G-O model .119 .171 .198 .195

Yamada-delayed .067 .112 .206 .326

s-shaped model

Kapur-3-stage model .035 .057 .095 .138

K-G model .004 .009 .021 .059

Error dependency .054 .081 -.057 -.087

model

Huang et al. model 1 .043 .067 .098 -.113

Huang et al. model 2 .007 .013 .027 .064

Proposed model 1 .004 .012 .036 -.001

(Equation 25)

Proposed model 2 .003 .009 .034 .128

(Equation 26)

Proposed model 3 .005 .034 .048 .156

(Equation 27)

Proposed model 4 .003 .003 -.014 -.012

(Equation 28)

Table 4 (a-c) Data Set II

(a) Parameter estimates

Model a b c p k β

G-O model 63883 .00008 - - - -

Yamada-delayed 503551 .001 - - - -

s-shaped model

Kapur-3-stage 2032 .046 - - - -

model

K-G Model 150 .417 - - - 582.9

Error dependency 218 .045 .282 .253 - -

model

Huang et al. model 1 196 .098 .554 .304 -

Huang et al. model 2 261 .063 .964 .959 1.186 -

Proposed model 1 144 .0003 .0005 .435 2.454 -

(Equation 25)

Proposed model 2 145 .001 .022 .988 2.156 -

(Equation 26)

Proposed model 3 147 .008 .001 .988 1.478 -

(Equation 27)

Proposed model 4 145 .014 .022 .856 1.107 1.432

(Equation 28)

(b) Comparison criteria

Model R2 MSE Bias Variation RMSPE

G-O model .74141 613.01 8.361 23.880 25.302

Yamada-delayed .95580 104.79 3.852 9.719 10.454

s-shaped model

Kapur-3-stage .97965 48.227 0.958 7.048 7.113

model

K-G model .99716 6.723 -0.525 2.602 2.654

Error dependency .80085 472.09 2.189 22.151 22.259

model

Huang et al. .91721 196.28 4.672 13.534 14.318

model 1

Huang et al. .99480 12.317 0.2438 3.588 3.596

model 2

Proposed model 1 .99708 6.934 -0.667 2.610 2.694

(Equation 25)

Proposed model 2 .99727 6.479 0.024 2.608 2.608

(Equation 26)

Proposed model 3 .99698 7.162 0.003 2.742 2.742

(Equation 27)

Proposed model 4 .99760 5.683 -0.152 2.438 2.443

(Equation 28)

(c) Relative predictive error (RPE)

Model 100% 90% 80% 70%

G-O model -.233 -.314 -.445 -.575

Yamada-delayed .026 .026 -.071 -.192

s-shaped model

Kapur-3-stage model .019 -.021 .033 .087

K-G model .016 .081 .095 -.037

Error dependency .049 .057 -.181 -.234

model

Huang et al. model 1 .027 .028 -.041 -.217

Huang et al. model 2 .025 .031 -.126 -.142

Proposed model 1 .009 .066 -.084 .096

(Equation 25)

Proposed model 2 .002 .011 -.056 .086

(Equation 26)

Proposed model 3 .003 .021 .048 .102

(Equation 27)

Proposed model 4 .001 .008 -.042 -.068

(Equation 28)



V. B. Singh et al./ Considering the Fault Dependency Concept with Debugging Time Lag in Software Reliability · · · 367

4.3 Goodness of fit curves for the pro-
posed SRGMs

Figs. 1 and 2 show the goodness of fit curves of the pro-

posed models.

Fig. 1 Mean value function of the proposed models for data set

I

Fig. 2 Mean value function of the proposed models for data set

II

5 Conclusions

In this paper, we first review an approach where the fault

detection process is dependent not only on residual fault

content but also on testing time. Based on this concept, we

proposed several software reliability growth models, which

incorporate the fault dependency concept and various de-

bugging time lag using a power function of testing time.

We have provided a simple but useful approach to measure

and assess software reliability during testing. It has signif-

icant potential in predicting software reliability during the

testing phase. Experimental results show that the proposed

framework to incorporate the fault dependency concept and

various debugging time lag using a power function of test-

ing time for an SRGMs has a fairly accurate goodness of

fit. It is assumed during the present modeling that there is

a time lag between detection and subsequent removal. The

various time lags assumed give rise to an s-shaped curve

for an independent fault detection process, which can be

relaxed, and it may be assumed that the time lag will be

zero for independent faults and the total fault detection

phenomenon is given by a more flexible model. Depending

upon the values of the parameters, it may reduce to either

exponential or s-shaped or a mix of the two unlike the one

described in this paper where the fault detection process

is given by s-shaped. This comparison will be brought in

future research work. Consequently, the development and

production of software can be improved significantly.

References

[1] J. D. Musa, A. Iannino, K. Okumoto. Software Reliability:
Measurement Prediction, Application, McGraw Hill, New
York, 1987.

[2] H. Pham. Software reliability, Springer, Sigapore, 2000.

[3] A. L. Goel, K. Okumoto. Time Dependent Error Detection
Rate Model for Software Reliability and Other Performance
Measures. IEEE Transactions on Reliability, vol. 28, no. 3,
pp. 206–211, 1979.

[4] P. K. Kapur, R. B Garg. A Software Reliability Growth
Model for an Error Removal Phenomenon. Software Engi-
neering Journal, vol. 7, no. 4, pp. 291–294, 1992.

[5] P. K. Kapur, R. B. Garg, S. Kumar. Contributions to Hard-
ware and Software Reliability, World Scientific, Singapore,
1999.

[6] P. K. Kapur, S. Younes. Software Reliability Growth Model
with Error Dependency. Microelectronics and Reliability,
vol. 35, no. 2, pp. 273–278, 1995.

[7] P. K. Kapur, A. K. Bardhan, S. Kumar. On Categorization
of Errors in a Software. Intrenational Journal of Manage-
ment and System, vol. 16, no. 1, pp. 37–38, 2000.

[8] S. Yamda, M. Ohba, S. Osaki. S-shaped Reliability Growth
Modeling for Software Error Detection. IEEE Transactions
on Reliability, vol. 32, no. 5, pp. 475–484, 1983.

[9] P. K. Kapur, V. B. Singh, S. Anand, V. S. S. Yadavalli.
Software Reliability Growth Model with Change-point and
Effort Control Using a Power Function of Testing Time. In-
ternational Journal of Production Research, [online], Avail-
able: http://www.informaworld.com, November 17, 2006.

[10] P. K. Kapur, V. S. S. Yadavalli, A. Gupta. Software Reli-
ability Growth Modeling Using Power Function of Testing
Time. International Journal of Operations and Quantitative
Management, vol. 12, no. 2, pp. 127–140, 2006.

[11] P. K. Kapur, S. Younes, S. Agarwala. Generalized Erlang
Software Reliability Growth Model. ASOR Bulletin, vol. 14,
no. 1, pp. 5–11, 1995.

[12] M. Ohbha. Inflection S-shaped Software Reliability Growth
Model. Stochastic Models in Reliability Theory, S. Osaki,
Y. Hotoyama (eds.), Springer Verlag, Berlin, pp. 144–162,
1984.

[13] P. K. Kapur, A. K. Bardhan, O. Shatnawi. Software Reli-
ability Growth Model with Fault Dependency Using Lag
Function. In Proceedings of International Conference on
Quality, Reliability and Control, IIT Mumbai, vol. 53, pp.
1–7, 2001.



368 International Journal of Automation and Computing 04(4), October 2007

[14] C. Y. Huang, C. T. Lin. Software Reliability Analysis by
Considering Fault Dependency and Debugging Time Lag.
IEEE Transactions on Reliability, vol. 55, No. 3, pp. 436–
450, 2006.

[15] W. D. Brooks, R. W. Motley. Analysis of Discrete Soft-
ware Reliability Models. Technical Report RADC-TR-80-
84, Rome Air Development Center, New York, 1980.

[16] J. D. Musa. Software Reliability Data, Data and
Analysis Center for Software, [online], Available:
http://www.dacs.dtic.mil, May 1980.

V. B. Singh received the M.C.A. degree
from M.M.M. Engineering College, Gorakh-
pur, U.P., India. He is a lecturer in the
Department of Computer Science at Delhi
College of Arts and Commerce, University
of Delhi, Delhi, India. Presently, he is a
Ph.D. candidate at the University of Delhi,
Delhi. He has published nine research pa-
pers.

His research interests include software testing and software
reliability engineering.

Kalpana Yadav received the M.Tech.
in computer science and engineering from
Guru Jambheshwar University, Hissar, In-
dia. She is a lecturer in the Depart-
ment of Computer Science at Indira Gandhi
Institute of Technology, Guru Gobind
Singh Indraprastha University, Delhi, In-
dia. Presently, she is a Ph.D. candidate at
Jiwaji University, Gwalior. She has pub-

lished nine research papers.
Her research interests include software testing and software

reliability engineering.

Reecha Kapur is a research scholar at
the Department of Mathematics and Com-
puter Application, Bundelkhand Univer-
sity, Jhansi, India. She did her Post Grad-
uation in mathematics from Bundelkhand
University, Jhansi, India. She has pub-
lished three research papers.

Her research interests include imperfect
debugging models in software reliability

and its effect on software testing cost.

V. S. S. Yadavalli received his Ph.D.
degree from the Indian Institute of Technol-
ogy in 1982. He is a professor of Industrial
& Systems Engineering at the University of
Pretoria. He has published over 90 research
papers on reliability theory, queueing the-
ory, inventory theory, software reliability,
manpower planning, econometric modeling
in ISI accredited journals like IEEE Trans-

actions on Reliability, Microelectronics and Reliability, Stochas-
tic Analysis and Applications, International Journal of Systems
Science, Asia Pacific Journal of Operational Research, Applied
Mathematics & Computation, South African Computer Journal,
South African Journal of Industrial Engineering, International
Journal of Computers & Industrial Engineering, etc. He is in the
editorial board of Asia Pacific Journal of Opertional Research,
Management Dynamics, South African Journal of Industrial En-
gineering. He has been recently listed in Marquis Who′s Who
(23rd edition).

His research interests include reliability theory, queueing the-
ory, inventory theory, software reliability, manpower planning,
and econometric modeling.


