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Abstract: Rough set theory provides a useful mathematical foundation for developing automated computational systems that can
help understand and make use of imperfect knowledge. Despite its recency, the theory and its extensions have been widely applied to
many problems, including decision analysis, data mining, intelligent control and pattern recognition. This paper presents an outline
of the basic concepts of rough sets and their major extensions, covering variable precision, tolerance and fuzzy rough sets. It also
shows the diversity of successful applications these theories have entailed, ranging from financial and business, through biological and
medicine, to physical, art, and meteorological.
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1 Introduction

Dealing with incomplete or imperfect knowledge is the
core of much research in computational intelligence and
cognitive sciences. Being able to understand and manipu-
late such knowledge is of fundamental significance to many
theoretical developments and practical applications of au-
tomation and computing, especially in the areas of decision
analysis, machine learning and data mining, intelligent con-
trol and pattern recognition. Rough set theory[1, 2] offers
one of the most distinct and recent approaches for this.

Indeed, since its invention, this theory has been success-
fully utilised to devise mathematically sound and often,
computationally efficient techniques for addressing prob-
lems such as hidden pattern discovery from data, data re-
duction, data significance evaluation, decision rule gener-
ation, and data-driven inference interpretation[3]. Owing
to the recognition of the existing and potential important
impact of this theory, it has attracted world-wide attention
of further research and development, resulting in various
extensions to the original theory and increasingly widening
fields of application. This paper attempts to offer a con-
cise overview of the basic ideas of rough set theory, and its
major extensions with sample applications. Further details
can be found in the literature (e.g. LNCS Transactions on
Rough Sets) and on the internet (e.g. www.roughsets.org).

This paper is organized as follows. The next section out-
lines the preliminary concepts of rough set theory. Section 3
introduces three major extensions made to the original the-
ory, covering variable precision rough sets, tolerance rough
sets and fuzzy rough sets. Section 4 describes a range of
practical applications of the theory and a specific theoret-
ical development on feature selection that is based on the
use of the original or extended rough set theories and that
is itself an important topic in automation and computing.
The final section concludes the paper and points out some
interesting further work.
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2 Rough set theory

Rough set theory (RST )is an extension of conven-
tional set theory that supports approximations in deci-
sion making[1,4−7]. It possesses many features in common
(to a certain extent) with the Dempster-Shafer theory of
evidence[8] and fuzzy set theory[9, 10]. A rough set is it-
self the approximation of a vague concept (set) by a pair
of precise concepts, called lower and upper approximations,
which are a classification of the domain of interest into dis-
joint categories. The lower approximation is a description
of the domain objects which are known with certainty to
belong to the subset of interest, whereas the upper approx-
imation is a description of the objects which possibly belong
to the subset.

It works by exploring and exploiting the granularity
structure of the data only. This is a major difference when
compared with Dempster-Shafer theory[11, 12] and fuzzy set
theory[13] which require probability assignments and mem-
bership values respectively. However, this does not mean
that no model assumptions are made. In fact by using only
the given information, the theory assumes that the data
is a true and accurate reflection of the real world (which
may not be the case). The numerical and other contex-
tual aspects of the data are ignored which may seem to be
a significant omission, but keeps model assumptions to a
minimum.

2.1 Information and decision systems

An information system can be viewed as a table of data,
consisting of objects (rows in the table) and attributes
(columns). In medical datasets, for example, patients might
be represented as objects and measurements such as blood
pressure, form attributes. The attribute values for a partic-
ular patient is their specific reading for that measurement.
Throughout this paper, the terms attribute, feature and
variable are used interchangeably.

An information system may be extended by the inclu-
sion of decision attributes. Such a system is termed a de-
cision system. For example, the medical information sys-
tem mentioned previously could be extended to include pa-
tient classification information, such as whether a patient
is ill or healthy. A more abstract example of a decision
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system can be found in Table 1. Here, the table con-
sists of four conditional features (a, b, c, d), a decision fea-
ture (e) and eight objects. A decision system is consistent
if for every set of objects whose attribute values are the
same, the corresponding decision attributes are identical.

Table 1 An example dataset

x ∈ U a b c d ⇒ e

0 S R T T R

1 R S S S T

2 T R R S S

3 S S R T T

4 S R T R S

5 T T R S S

6 T S S S T

7 R S S R S

More formally, I = (U,A) is an information system,
where U is a non-empty set of finite objects (the universe of
discourse) and A is a non-empty finite set of attributes such
that a : U→ Va for every a ∈ A. Va is the set of values that
attribute a may take. For decision systems, A = {C ∪ D}
where C is the set of input features and D is the set of
class indices. Here, a class index d ∈ D is itself a variable
d : U→ {0, 1} such that for a ∈ U, d(a) = 1 if a has class d
and d(a) = 0 otherwise.

2.2 Indiscernibility

With any P ⊆ A there is an associated equivalence rela-
tion IND(P ):

IND(P ) = {(x, y) ∈ U2 | ∀ a ∈ P, a(x) = a(y)}. (1)

Note that this corresponds to the equivalence relation for
which two objects are equivalent if and only if they have
the same vectors of attribute values for the attributes in
P . The partition of U, determined by IND(P) is denoted
U/IND(P ) or U/P , which is simply the set of equivalence
classes generated by IND(P ):

U/IND(P ) = ⊗{U/IND({a}) | a ∈ P}, (2)

where

A⊗B = {X ∩ Y | ∀X ∈ A, ∀Y ∈ B, X ∩ Y 6= ∅}. (3)

If (x, y) ∈ IND(P ), then x and y are indiscernible by at-
tributes from P . The equivalence classes of the indiscerni-
bility relation with respect to P are denoted [x]P , x ∈ U.
For the illustrative example, if P = {b,c}, then objects 1,
6 and 7 are indiscernible; as are objects 0 and 4. IND(P)
creates the following partition of U :

U/IND(P ) = U/IND(b)⊗ U/IND(c) =

{{0, 2, 4}, {1, 3, 6, 7}, {5}} ⊗ {{2, 3, 5}, {1, 6, 7}, {0, 4}} =

{{2}, {0, 4}, {3}, {1, 6, 7}, {5}}.

2.3 Lower and upper approximations

Let X ⊆ U. X can be approximated using only the
information contained within P by constructing the P -lower

and P -upper approximations of the classical crisp set X:

PX = {x | [x]P ⊆ X} (4)

PX = {x | [x]P ∩X 6= ∅}. (5)

It is such a tuple 〈PX, PX〉 that is called a rough set.
Consider the approximation of concept X in Fig. 1 Each
square in the diagram represents an equivalence class, gen-
erated by indiscernibility between object values. Using the
features in set B, via these equivalence classes, the lower
and upper approximations of X can be constructed. Equiv-
alence classes contained within X belong to the lower ap-
proximation. Objects lying within this region can be said to
belong definitely to concept X. Equivalence classes within
X and along its border form the upper approximation.
Those objects in this region can only be said to possibly
belong to the concept.

Fig. 1 A rough set

2.4 Positive, negative and boundary re-
gions

Let P and Q be equivalence relations over U, then the
positive, negative and boundary regions are defined as

POSP (Q) =
[

X∈U/Q

PX (6)

NEGP (Q) = U−
[

X∈U/Q

PX (7)

BNDP (Q) =
[

X∈U/Q

PX −
[

X∈U/Q

PX. (8)

The positive region comprises all objects of U that can be
classified to classes of U/Q using the information contained
within attributes P. The boundary region, BNDP (Q), is
the set of objects that can possibly, but not certainly, be
classified in this way. The negative region, NEGP (Q), is the
set of objects that cannot be classified to classes of U/Q.
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For example, let P = {b,c} and Q = {e}, then

POSP (Q) =
[
{∅, {2, 5}, {3}} = {2, 3, 5}

NEGP (Q) = U−
[
{{0, 4}, {2, 0, 4, 1, 6, 7, 5}, {3, 1, 6, 7}}=

∅
BNDP (Q) =

[
{{0, 4}, {2, 0, 4, 1, 6, 7, 5}, {3, 1, 6, 7}}−

{2, 3, 5} = {0, 1, 4, 6, 7}.
This means that objects 2, 3 and 5 can certainly be classi-

fied as belonging to a class in attribute e, when considering
attributes b and c. The rest of the objects cannot be clas-
sified as the information that would make them discernible
is absent.

2.5 Attribute dependency and significance

An important issue in data analysis is discovering depen-
dencies between attributes. Intuitively, a set of attributes
Q depends totally on a set of attributes P, denoted P ⇒ Q,
if all attribute values from Q are uniquely determined by
values of attributes from P. In rough set theory, dependency
is defined in the following way:

For P, Q ⊂ A, it is said that Q depends on P in a degree
k (0 ≤ k ≤ 1), denoted P ⇒k Q, if

k = γP (Q) =
|POSP (Q)|

|U| (9)

where |S| stands for the cardinality of set S. If k = 1, Q
depends totally on P, if 0 < k < 1, Q depends partially (in
a degree k) on P, and if k = 0 then Q does not depend on
P . In the example, the degree of dependency of attribute
{e} from the attributes {b,c} is

γ{b,c}({e}) =
|POS{b,c}({e})|

|U| =
|{2, 3, 5}|

|{0, 1, 2, 3, 4, 5, 6, 7}| =
3

8
.

By calculating the change in dependency when an at-
tribute is removed from the set of considered possible at-
tributes, an estimate of the significance of that attribute
can be obtained. The higher the change in dependency,
the more significant the attribute is. If the significance is
0, then the attribute is dispensable without losing informa-
tion. More formally, given P, Q and an attribute x ∈ P ,
the significance of attribute x upon Q is defined by

σP (Q, a) = γP (Q)− γP−{a}(Q). (10)

For example, if P = {a,b,c} and Q = {e} then

γ{a,b,c}({e}) = |{2, 3, 5, 6}|/8 = 4/8

γ{a,b}({e}) = |{2, 3, 5, 6}|/8 = 4/8

γ{b,c}({e}) = |{2, 3, 5}|/8 = 3/8

γ{a,c}({e}) = |{2, 3, 5, 6}|/8 = 4/8.

And calculating the significance of the three attributes gives

σP (Q, a) = γ{a,b,c}({e})− γ{b,c}({e}) = 1/8

σP (Q, b) = γ{a,b,c}({e})− γ{a,c}({e}) = 0

σP (Q, c) = γ{a,b,c}({e})− γ{a,b}({e}) = 0.

From this it follows that attribute a is indispensable, but
attributes b and c can be dispensed with when consider-
ing the dependency between the decision attribute and the
given individual conditional attributes.

2.6 Reducts

For many application problems, it is often necessary to
maintain a concise form of the information system. One way
to implement this is to search for a minimal representation
of the original dataset. For this, the concept of a reduct is
introduced and defined as a minimal subset R of the ini-
tial attribute set C such that for a given set of attributes
D, γR(D) = γC(D). From the literature, R is a minimal
subset if γR−{a}(D) 6= γR(D) for all a ∈ R. This means
that no attributes can be removed from the subset without
affecting the dependency degree. Hence, a minimal subset
by this definition may not be the global minimum (a reduct
of smallest cardinality). A given dataset may have many
reduct sets, and the collection of all reducts is denoted by

Rall = {X |X ⊆ C, γX(D) = γC(D);

γX−{a}(D) 6= γX(D), ∀a ∈ X}. (11)

The intersection of all the sets in Rall is called the core,
the elements of which are those attributes that cannot be
eliminated without introducing more contradictions to the
representation of the dataset. For many tasks (for exam-
ple, feature selection[14]), a reduct of minimal cardinality is
ideally searched for. That is, an attempt is to be made to
locate a single element of the reduct set Rmin ⊆ Rall:

Rmin = {X |X ∈ Rall, ∀Y ∈ Rall, |X| ≤ |Y |}. (12)

The problem of finding a reduct of an information sys-
tem has been the subject of much research[15, 16]. The
QuickReduct algorithm given in follows (adapted from
[17]), attempts to calculate reducts for a decision problem
(though the underlying approach can be applied to other
tasks), without exhaustively generating all possible subsets:

The QuickReduct algorithm

QuickReduct(C,D).

C: the set of all conditional attributes;

D: the set of decision attributes.

1) R ← {}
2) do

3) T ← R

4) ∀x ∈ (C−R)

5) if γR∪{x}(D) > γT (D)

6) T ← R ∪ {x}
7) R ← T

8) until γR(D) == γC(D)

9) return R

It starts off with an empty set and adds in turn, one at a
time, those attributes that result in the greatest increase
in the rough set dependency metric, until this produces its
maximum possible value for the dataset. Other such tech-
niques may be found in [18, 19].

2.7 Discernibility matrix

Many applications of rough sets make use of discernibil-
ity matrices for finding rules or reducts. A discernibility
matrix[20, 21] of a decision table (U,C ∪ D) is a symmetric
|U| × |U| matrix with entries defined by

cij = {a ∈ C|a(xi) 6= a(xj)}, i, j = 1, ..., |U|. (13)
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Each cij contains those attributes that differ between ob-
jects i and j.

For finding reducts, the so-called decision-relative dis-
cernibility matrix is of more interest. This only considers
those object discernibility that occur when the correspond-
ing decision attributes differ. Returning to the example
dataset, the decision-relative discernibility matrix is pro-
duced, found in Table 2. For example, it can be seen from
the table that objects 0 and 1 differ in each attribute. Al-
though some attributes in objects 1 and 3 differ, their cor-
responding decisions are the same so no entry appears in
the decision-relative matrix. Grouping all entries contain-
ing single attributes forms the core of the dataset (those
attributes appearing in every reduct). Here, the core of the
dataset is {d}.

Table 2 The decision-relative discernibility matrix

x ∈ U 0 1 2 3 4 5 6 7

0

1 a, b, c, d

2 a, c, d a, b, c

3 b, c a, b, d

4 d a, b, c, d b, c, d

5 a, b, c, d a, b, c a, b, d

6 a, b, c, d b, c a, b, c, d b, c

7 a, b, c, d d a, c, d a, d

From this, the concept of discernibility functions can be
introduced. This is a concise notation of how each object
within the dataset may be distinguished from the others. A
discernibility function fD is a boolean function of m boolean
variables a∗1, ..., a

∗
m (corresponding to the membership of at-

tributes a1, ..., am to a given entry of the discernibility ma-
trix) defined as below:

fD(a∗1, ..., a
∗
m) = ∧{∨c∗ij |1 ≤ j ≤ i ≤ |U|, cij 6= ∅} (14)

where c∗ij = {a∗|a ∈ cij}. By finding the set of all prime
implicants of the discernibility function, all the minimal
reducts of a system may be determined. From Table 2, the
decision-relative discernibility function is (with duplicates
removed)

fD(a∗, b∗, c∗, d∗) = (a∗ ∨ b∗ ∨ c∗ ∨ d∗) ∧ (a∗ ∨ c∗ ∨ d∗)∧
(b∗ ∨ c∗) ∧ (d∗) ∧ (a∗ ∨ b∗ ∨ c∗)∧
(a∗ ∨ b∗ ∨ d∗) ∧ (b∗ ∨ c∗ ∨ d∗) ∧ (a∗ ∨ d∗).

Further simplification can be performed by removing those
clauses that are subsumed by others:

fD(a∗, b∗, c∗, d∗) = (b∗ ∨ c∗) ∧ (d∗).

The reducts of the dataset may be obtained by converting
the above expression from conjunctive normal form to dis-
junctive normal form (without negations). Hence, the min-
imal reducts are {b, d} and {c, d}. Although this is guaran-
teed to discover all minimal subsets, it is a costly operation
rendering the method impractical for even medium-sized
datasets. As all that is required is the discovery of a sin-
gle reduct for many applications, efficient heuristic methods
may be applied.

3 Rough set extensions

The reliance on discrete data for the successful opera-
tion of RST can be seen as a significant drawback of the
approach. Indeed, this requirement of RST implies an ob-
jectivity in the data that is simply not present[22]. For
example, in a medical dataset, values such as Yes or No
cannot be considered objective for a Headache attribute as
it may not be straightforward to decide whether a person
has a headache or not to a high degree of accuracy. Again,
consider an attribute Blood Pressure. In the real world,
this is a real-valued measurement but for the purposes of
RST must be discretised into a small set of labels such as
“Normal”, “High”, etc. Subjective judgments are required
for establishing boundaries for objective measurements.

In the rough set literature, several extensions have been
developed that attempt to handle better the uncertainty
present in real world data. In particular, variable precision
rough sets[23] is a generalized model of rough sets, allowing a
controlled degree of misclassification by relaxing the subset
operator. Fuzzy-rough sets[24] and tolerance rough sets[25]

handle real-valued data by replacing the traditional equiva-
lence classes of crisp rough set theory with alternatives that
are better suited to dealing with this type of data. In the
fuzzy-rough case, fuzzy equivalence classes are employed
within a fuzzy extension of rough set theory, resulting in
a hybrid approach. In the tolerance case, indiscernibility
relations are replaced with similarity relations that permit
a limited degree of variability in attribute values. Approx-
imations are constructed based on these tolerance classes
in a manner similar to that of traditional rough set theory.
An overview of these extensions is given below.

3.1 Variable precision rough sets

Variable precision rough sets (VPRS)[23] attempts to im-
prove upon rough set theory by relaxing the subset opera-
tor. It was proposed to analyse and identify data patterns
which represent statistical trends rather than functional.
The main idea of VPRS is to allow objects to be classified
with an error smaller than a certain predefined level.

This approach is arguably easiest to be understood
within the framework of classification. Let X, Y ⊆ U, the
relative classification error is defined by

c(X, Y ) = 1− |X ∩ Y |
|X| .

Observe that c(X, Y ) = 0 if and only if X ⊆ Y . A degree
of inclusion can be achieved by allowing a certain level of
error, β, in classification:

X ⊆β Y iff c(X, Y ) ≤ β, 0 ≤ β < 0.5.

Using ⊆β instead of ⊆, the β-upper and β-lower approx-
imations of a set X can be defined as

RβX =
[
{[x]R ∈ U/R|[x]R ⊆β X}

RβX =
[
{[x]R ∈ U/R|c([x]R, X) < 1− β}.

Note that RβX = RX for β = 0. The positive, negative
and boundary regions in the original rough set theory can
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now be extended to

POSR,β(X) = RβX (15)

NEGR,β(X) = U−RβX (16)

BNDR,β(X) = RβX −RβX. (17)

Returning to the example dataset in Table 1, (15) can be
used to calculate the β-positive region for R = {b, c}, X =
{e} and β = 0.4. Setting β to this value means that a set
is considered to be a subset of another if they share about
half the number of elements. The partitions of the universe
of objects for R and X are

U/R = {{2}, {0, 4}, {3}, {1, 6, 7}, {5}}
U/X = {{0}, {1, 3, 6}, {2, 4, 5, 7}}.

For each set A ∈ U/R and B ∈ U/X, the value of c(A,B)
must be less than β if the equivalence class A is to be in-
cluded in the β-positive region. Considering A = {2} gives

c({2}, {0}) = 1 > β

c({2}, {1, 3, 6}) = 1 > β

c({2}, {2, 4, 5, 7}) = 0 < β.

So object 2 is added to the β-positive region as it is a β-
subset of {2, 4, 5, 7} (and is in fact a traditional subset of the
equivalence class). Taking A = {1, 6, 7}, a more interesting
case is encountered:

c({1, 6, 7}, {0}) = 1 > β

c({1, 6, 7}, {1, 3, 6}) = 0.3333 < β

c({1, 6, 7}, {2, 4, 5, 7}) = 0.6667 > β.

Here the objects 1, 6 and 7 are included in the β-positive
region as the set {1, 6, 7} is a β-subset of {1, 3, 6}. Calculat-
ing the subsets in this way leads to the following β-positive
region:

POSR,β(X) = {1, 2, 3, 5, 6, 7}.
Compare this with the positive region generated previ-

ously: {2, 3, 5}. Objects 1, 6 and 7 are now included due to
the relaxation of the subset operator. Consider a decision
table (U,C∪D), where C is the set of conditional attributes
and D the set of decision attributes. The β-positive region
of an equivalence relation Q on U may be determined by

POSR,β(Q) =
S

X∈U/Q RβX

where R is also an equivalence relation on U. This can
then be used to calculate dependencies and thus determine
β-reducts. The dependency function becomes

γR,β(Q) =
|POSR,β(Q)|

|U| .

It can be seen that the QuickReduct algorithm out-
lined previously can be adapted to incorporate the reduc-
tion method built upon VPRS theory. By supplying a suit-
able β value to the algorithm, the β-lower approximation,
β-positive region, and β-dependency can replace the tradi-
tional calculations. This will result in a more approximate
final reduct, which may be a better generalization when en-
countering unseen data. Additionally, setting β to 0 forces

such a method to behave exactly like standard rough set
theory.

Extended classification of reducts in the VPRS approach
may be found in [26-28]. However, the variable precision
approach requires the additional parameter β which has to
be specified from the start. By repeated experimentation,
this parameter can be suitably approximated. Nevertheless,
problems arise when searching for true reducts as VPRS
incorporates an element of imprecision in determining the
number of classifiable objects.

3.2 Tolerance rough sets

Another way of attempting to handle imprecision is to
introduce a measure of similarity of attribute values and
define the lower and upper approximations based on these
similarity measures.

3.2.1 Similarity measures

In this approach, suitable similarity relations must be
defined for each attribute, although the same definition can
be used for all attributes if applicable. A standard measure
for this purpose, given in [29] is

SIMa(x, y) = 1− |a(x)− a(y)|
|amax − amin| (18)

where a is the attribute under consideration, and amax and
amin denote the maximum and minimum values respectively
for this attribute.

When considering more than one attribute, the defined
similarities must be combined to provide a measure of the
overall similarity of objects. For a subset of attributes, P ,
this can be achieved in many ways; two commonly adopted
approaches are

(x, y) ∈ SIMP,τ iff
Y
a∈P

SIMa(x, y) ≥ τ (19)

(x, y) ∈ SIMP,τ iff

P
a∈P

SIMa(x, y)

|P | ≥ τ (20)

where τ is a global similarity threshold. This framework al-
lows for the specific case of traditional rough sets by defin-
ing a suitable similarity measure (e.g. equality of attribute
values and (19)) and threshold (τ = 1). Further similarity
relations are investigated in [30], but are omitted here.

From this, the so-called tolerance classes that are gen-
erated by a given similarity relation for an object x are
defined as

SIMP,τ (x) = {y ∈ U|(x, y) ∈ SIMP,τ}. (21)

3.2.2 Approximations and dependency

Lower and upper approximations are then defined in a
similar way to traditional rough set theory:

PτX = {x|SIMP,τ (x) ⊆ X} (22)

PτX = {x|SIMP,τ (x) ∩X 6= ∅}. (23)
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The tuple 〈PτX, PτX〉 is called a tolerance rough set[25].
Positive region and dependency functions then become

POSP,τ (Q) =
[

X∈U/Q

PτX (24)

γP,τ (Q) =
|POSP,τ (Q)|

|U| . (25)

From these definitions, methods for reduct search can be
constructed that use the tolerance-based degree of depen-
dency, γP,τ (Q), to gauge the significance of attribute sub-
sets (in a similar way as QuickReduct).

3.3 Fuzzy-rough sets

There have been two main lines of thought in the hy-
bridization of fuzzy and rough sets, the constructive ap-
proach and the axiomatic approach. A general framework
for the study of fuzzy-rough sets from both of these view-
points is presented in [31]. For the constructive approach,
generalized lower and upper approximations are defined
based on fuzzy relations. Initially, these were fuzzy similar-
ity/equivalence relations[24] but have since been extended
to arbitrary fuzzy relations[31]. The axiomatic approach is
primarily for the study of the mathematical properties of
fuzzy-rough sets[32]. Here, various classes of fuzzy-rough
approximation operators are characterized by different sets
of axioms that guarantee the existence of types of fuzzy
relations producing the same operators.

3.3.1 Main approaches

In the same way that crisp equivalence classes are cen-
tral to rough sets, fuzzy equivalence classes are central to
the fuzzy-rough set approach[24]. In classification applica-
tions for example, this means that the decision values and
the conditional values may all be fuzzy. The concept of
crisp equivalence classes can be extended by the inclusion
of a fuzzy similarity relation S on the universe, which de-
termines the extent to which two elements are similar in
S[33]. The usual properties of reflexivity (µS(x, x) = 1),
symmetry (µS(x, y) = µS(y, x)) and transitivity (µS(x, z)
≥ µS(x, y) ∧ µS(y, z), where ∧ is a t-norm) hold.

Using such a fuzzy similarity relation S, the fuzzy equiv-
alence class [x]S for objects close to x can be defined:

µ[x]S (y) = µS(x, y). (26)

The following axioms should hold for a fuzzy equivalence
class F = [x]S

[33]:

• ∃x, µF (x) = 1

• µF (x) ∧ µS(x, y) ≤ µF (y)

• µF (x) ∧ µF (y) ≤ µS(x, y)

The first axiom corresponds to the requirement that an
equivalence class is non-empty. The second axiom states
that elements in y′s neighborhood are in the equivalence
class of y. The final axiom states that any two elements in
F are related via S. Obviously, this definition degenerates
to the normal definition of equivalence classes when S is
non-fuzzy.

An initial definition of fuzzy P -lower and P -upper ap-
proximations was given in [24] as follows:

µPX(Fi) = inf
x

max{1− µFi(x), µX(x)} ∀i (27)

µPX(Fi) = sup
x

min{µFi(x), µX(x)} ∀i (28)

where Fi is a fuzzy equivalence class and X is the (fuzzy)
concept to be approximated. The tuple 〈PX, PX〉 is called
a fuzzy-rough set.

Also defined in the literature are rough-fuzzy sets[34],
which can be seen to be a particular case of fuzzy-rough
sets. A rough-fuzzy set is a generalization of a rough set,
derived from the approximation of a fuzzy set in a crisp
approximation space. In [35] it is argued that, to be con-
sistent, the approximation of a crisp set in a fuzzy approx-
imation space should be called a fuzzy-rough set, and the
approximation of a fuzzy set in a crisp approximation space
should be called a rough-fuzzy set, making the two models
complementary. In this framework, the approximation of a
fuzzy set in a fuzzy approximation space is considered to
be a more general model, unifying the two theories. How-
ever, most researchers consider the traditional definition of
fuzzy-rough sets in [24] as standard.

The specific use of min and max operators in the def-
initions above is expanded in [36], where a broad fam-
ily of fuzzy-rough sets is constructed, with each member
represented by a particular implicator and t-norm. The
properties of three well-known implicators (S-, R- and QL-
implicators) are investigated. For example, a fuzzy-rough
lower approximation defined using the ÃLukasiewicz implica-
tor (which is both an S- and R-implicator) is as follows:

µPX(Fi) = infx min{1− µFi(x) + µX(x), 1}, ∀i.
Further investigations in this area can be found in [31, 37-
39].

In [40,41], an axiomatic approach is taken, but restricted
to fuzzy T-similarity relations (and hence fuzzy T-rough
sets), where T is a lower semi-continuous triangular norm.
The work of [42] investigates the properties of generalized
fuzzy-rough sets, defining a pair of dual generalized fuzzy
approximation operators based on arbitrary fuzzy relations.
The approach presented in [43] introduces definitions for
generalized fuzzy lower and upper approximation opera-
tors determined by a residual implication. Assumptions
are found that allow a given fuzzy set-theoretic operator to
represent a lower or upper approximation from a fuzzy rela-
tion. Different types of fuzzy relations (for example, fuzzy
equivalence, fuzzy similarity, etc.) produce different classes
of fuzzy-rough set algebras.

The work in [44] generalizes the fuzzy-rough set concept
through the use of residual lattices. An arbitrary residual
lattice L is used as a basic algebraic structure, and several
classes of L-fuzzy-rough sets, defined using the product op-
erator and its residuum provided by the residual lattice, and
their properties are investigated. In [45], a complete com-
pletely distributive (CCD) lattice is selected as the foun-
dation for defining lower and upper approximations in an
attempt to provide a unified framework for rough set gener-
alizations. It is demonstrated that the existing fuzzy-rough
sets are special cases of the approximations on a CCD lat-
tice for T-similarity relations.
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The relationships between fuzzy-rough set models and
fuzzy ([0,1]-) topologies on a finite universe have been inves-
tigated. The first such research was reported in [40], where
it was proved that the lower and upper approximation oper-
ators were fuzzy interior and closure operators respectively
for fuzzy T-similarity relations. The work carried out in [31]
investigated this for arbitrary fuzzy relations. In [46, 47] it
was shown that a pair of dual fuzzy rough approximation
operators can induce a topological space if and only if the
fuzzy relation is reflexive and transitive.

3.3.2 Other generalizations

In addition to the previous approaches to fuzzy-rough or
rough-fuzzy hybridization, other generalizations are possi-
ble. One of the first attempts at hybridizing the two theories
is reported in [10], where rough sets are expressed by a fuzzy
membership function to represent the negative, boundary
and positive regions. All objects in the positive region have
a membership of one and those belonging to the boundary
region have a membership of 0.5. Those that are contained
in the negative region (and therefore do not belong to the
rough set) have zero membership. In so doing, a rough set
can be expressed as a fuzzy set, with suitable modifications
to the rough union and intersection operators. In [48], a
definition of fuzzy-rough sets is given based on an algebraic
approach to rough sets[49], where a rough set is defined as
a pair of subsets from a sub-Boolean algebra without refer-
ence to the universe. The lower and upper bounds of such
a rough set are then fuzzified. As stated in [35], the precise
meaning of the upper and lower bounds may not be clear.

Another approach that blurs the distinction between
rough and fuzzy sets has been proposed in [50]. The re-
search was fueled by the concern that a purely numeric
fuzzy set representation may be too precise, a concept is
described exactly once its membership function has been
defined. It seems as though excessive precision is required
in order to describe imprecise concepts. The solution pro-
posed is termed a shadowed set, which itself does not use
exact membership values but instead employs basic truth
values and a zone of uncertainty (the unit interval). A shad-
owed set could be thought of as an approximation of a fuzzy
set or family of fuzzy sets where elements may belong to the
set with certainty (membership of 1), possibility (unit in-
terval) or not at all (membership of 0). This can be seen
to be analogous to the definitions of the rough set regions:
the positive region (certainty), the boundary region (possi-
bility) and the negative region (no membership).

4 Applications

This section provides a brief overview of some of the
many applications of rough set theory. There are several
properties of rough sets that make the theory an obvious
choice for use in dealing with real problems; for example,
it handles uncertainty present in real data through approx-
imations and also does not require threshold information
in order to operate (as is the case with many current tech-
niques).

4.1 Prediction of business failure

Attempts to develop business failure prediction models
began seriously sometime in the late 1960s and continue

through today. Although there has been much research
in this area, there is still no unified well-specified theory
of how and why corporations fail. Financial organizations
need these predictions for evaluating firms of interest.

Many methods have been used for the purpose of
bankruptcy prediction, such as logic analysis, discriminant
analysis and probit analysis[51]. A comprehensive review
of the various approaches to modeling and predicting this
is presented in [52]. Although some of these methods led
to satisfactory models, they suffered from limitations, of-
ten due to unrealistic statistical assumptions. Because of
this, the rough set model, with its aim of keeping model
assumptions to a minimum, appeared to be a highly useful
approach for the analysis of financial information tables.

Rough set-based failure prediction was investigated in
[53, 54]. In these investigations, the rough set approach was
evaluated against several other methods, including C4.5[55],
discriminant analysis and logit analysis. For the rough ap-
proach, decision rules were generated from the reducts pro-
duced by analysis of the financial information. All methods
were then evaluated on data from the previous three years.
The rough set model was found to be more accurate than
discriminant analysis by an average of 6.1% per case, using
a minimal set of reduced rules. It also outperformed C4.5,
but performed similarly to logit analysis.

A comparative study of the rough sets model versus
multi-variable discriminant analysis (MDA) can be found in
[56]. It was demonstrated that through the use of rough set
theory, the prediction of corporate bankruptcy was 97.0%
accurate - an improvement over MDA which achieved an
accuracy of 96.0%.

4.2 Financial investment

Trading systems have been built using rough set ap-
proaches. In [57-59], the rough set model was applied to
discover strong trading rules that reflect highly repetitive
patterns in data. Historical data from the Toronto stock ex-
change in 1980 was used for the extraction of trading rules
for five companies. Experts confirmed that the extracted
rules described the stock behavior and market sensitivity of
these companies. Depending on a roughness parameter, the
rules generated were either “general” or “exact”. The gen-
eral rules were all recognised relationships in the investment
industry, whereas the exact rules made less sense.

In the work reported in [60], the problem of how to de-
duce rules that map the financial indicators at the end of
a month to the stock price changes a month later was ad-
dressed. This was based on 15 market indicators. From this
study, only a satisfactory performance was achieved with
many issues still to be tackled, such as data filtration and
how to handle missing data. In [61], research was carried
out into rough set reduct analysis and rule construction for
forecasting the total index of the Oslo stock exchange. This
also achieved satisfactory results, with a highest accuracy
of 45%.

Research has been carried out on building trading sys-
tems for the S&P index[62]. Here, a hybrid system was de-
veloped that incorporated both neural networks and rough
sets. Rules generated by rough sets were used to supervise
neural networks to correct for possible errors in predictions.
This system reduced drawdown by 25-50% and increased
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the average winner/loser ratio by 50-100%.
Rough sets have also been applied to financial deci-

sion analysis and explanation for an industrial development
bank, ETEVA[63, 64]. The bank was interested in investing
its capital in firms, whilst reducing the risk involved in such
an investment. To achieve this, a rough set-based firm as-
sessment system was constructed that decided, based on
a number of financial ratios, whether a company was ac-
ceptable, unacceptable or uncertain. An information table
was constructed with the help of the financial manager of
ETEVA. From this, the rough set-generated rules revealed
the financial policy applied in the selection of firms. The
rules can also be used to evaluate new firms that seek fi-
nancing from the bank.

4.3 Bioinformatics and medicine

A common and diagnostically challenging problem fac-
ing emergency department personnel in hospitals is that of
acute abdominal pain in children. There are many potential
causes for this pain - most are usually non-serious. How-
ever, the pain may be an indicator that a patient has a
serious illness, requiring immediate treatment and possibly
surgery. Experienced doctors will use a variety of relevant
historical information and physical observations to assess
children. Such attributes occur frequently in recognizable
patterns, allowing a quick and efficient diagnosis. Inexpe-
rienced physicians, on the other hand, may lack the knowl-
edge and information to be able to recognize these patterns.
The techniques developed in [65] provide a rough set-based
clinical decision model to assist such inexperienced physi-
cians. In this research, rough sets are used to support diag-
nosis by distinguishing between three disposition categories:
discharge, observation/further investigation, and consult.
Preliminary results show that the system gives an accuracy
comparable to physicians, though it is dependent on a suit-
ably high data quality.

Rough set data analysis is also applied to the problem of
extracting protein-protein interaction sentences in biomed-
ical literature[66]. Due to the abundance of published infor-
mation relevant to this area, manual information extraction
is a formidable task. This approach develops decision rules
of protein names, interaction words, and their mutual posi-
tions in sentences. To increase the set of potential interac-
tion words, a morphological model is developed, generating
spelling and inflection variants. The performance of the
method is evaluated using a hand-tagged dataset contain-
ing 1894 sentences, producing a precision-recall break-even
performance of 79.8% with leave-one-out cross-validation.

Automated classification of calculated electroencephalo-
gram (EEG) parameters has been shown to be a promising
method for detection of intraoperative awareness. In [67],
rough set-based methods were employed to generate clas-
sification rules resulting in satisfactory accuracy rates of
approximately 90%.

Gene expression experiments, where the genetic content
of samples is obtained with high throughput technologies,
result in high dimensional data. For useful information to
be discovered from this data (usually comprising of thou-
sands of genes), automated methods must be able to ei-
ther cope with this dimensionality or reduce it intelligently.
Typically, the latter option is chosen as this has the ad-

ditional benefit of making the extracted knowledge more
readable. Many rough set-based methods have been applied
to this task - both for feature reduction and classification
rule discovery[68, 69].

4.4 Fault diagnosis

A rough set approach for the diagnosis of valve faults in a
multi-cylinder diesel engine is investigated in [70]. The use
of rough sets enabled the diagnosis of several fault categories
in a generic manner. A decision table was constructed from
attributes extracted from the vibration signals, with four
operational states studied among the signal characteristics:
normal, intake valve clearance too small, intake valve clear-
ance too large, exhaust valve clearance too large. Three
sampling points were selected for the collection of vibration
signals. The results demonstrated that the system is quite
effective for such fault diagnosis, and the extracted rules
correspond well with prior knowledge of the system.

In [71], a rough set-based method for continuous failure
diagnosis in assembly systems is presented. Sensor mea-
surements were used to construct a diagnosis table from
which rough set rules were extracted.

4.5 Spacial and meteorological pattern
classification

Sunspot observation, analysis and classification form an
important part in furthering knowledge about the sun, the
solar weather, and its effect on earth. Certain categories
of sunspot groups are associated with solar flares. Obser-
vatories around the world track all visible sunspots in an
effort to early detect flares. Sunspot recognition and classi-
fication are currently manual and labor intensive processes
which could be automated if successfully learned by a ma-
chine. The approach presented in [72] employs a hierarchi-
cal rough set-based learning method for sunspot classifica-
tion. It attempts to learn the modified Zurich classification
scheme through rough set-based decision tree induction.
The resulting system is evaluated on sunspots extracted
from satellite images, with promising results.

In [73], a new application of rough set theory for classi-
fying meteorological radar data is introduced. Volumetric
radar data is used to detect storm events responsible for
severe weather. Classifying storm cells is a difficult prob-
lem as they exhibit a complex evolution throughout their
lifespan. Also, the high dimensionality and imprecision of
the data can be prohibitive. Here, a rough set approach
is employed to classify a number of meteorological storm
events.

4.6 Music and acoustics

A dominance-based rough set approach, an extension of
rough sets to preference-ordered information systems, was
used in [74] to generate preference models for violin qual-
ity grading. A set of violins were submitted to a violin-
maker′s competition and evaluated by a jury according to
several assessment criteria. The sound of the instruments
was recorded digitally and then processed to obtain sound
attributes. These features, along with jury assessments
were analyzed by the rough set method, generating pref-
erence models. It was shown that the jury′s rankings were
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well approximated by the automated approach.
In [75], an approach to classifying swallowing sound sig-

nals is given, utilising rough set theory. This approach has
been developed to facilitate the detection of patients at risk
of aspiration, or choking. The waveform dimension is used
to describe sound signal complexity and major changes in
signal variance. From swallow sound data tables, decision
rules were derived, via rough sets. The algorithms yielded
a high classification accuracy, whilst producing a compara-
tively small ruleset.

A decision system employing rough sets and neural net-
works is presented in [76]. The aim of the study was to au-
tomatically classify musical instrument sounds on the basis
of a limited number of parameters, and to test the qual-
ity of musical sound parameters that are included in the
MPEG-7 standard. The use of wavelet-based parameters
led to better audio retrieval efficiency.

The classification of musical works is considered in [77],
based on the inspection of standard music notations. A
decision table is constructed, with features representing
various aspects of musical compositions (objects), such as
rhythm disorder, beat characteristics and harmony. From
this, classification rules are induced (via rough set rule in-
duction) and used to classify unseen compositions.

4.7 Feature selection

The discussion above has focussed on actual practical
applications of rough set theory. This section is concerned
with the theoretical advancement of feature selection within
the rough set community.

As indicated previously, the work on rough set theory
offers a formal methodology that can be employed to re-
duce the dimensionality of datasets, often as a preprocess-
ing step to assist other tasks like learning from data[78].
The QuickReduct algorithm provided earlier is a typical
example of rough set-assisted feature selection tools. Such a
method helps select the most information rich features in a
dataset, without transforming the data, all while attempt-
ing to minimize information loss during the selection pro-
cess. Computationally, the approach is highly efficient as it
involves simple set operations only. Thus, it represents one
of the most successful applications of rough sets. However,
it is reliant upon a discrete dataset; important information
may be lost as a result of quantization of the underlying nu-
merical features (that real-world problems typically have).
It is natural, then, to apply its extensions to this area.

Such research has been carried out in [79-81], where a
reduction method was proposed based on fuzzy extensions
to the positive region and dependency function based on
fuzzy lower approximations. A greedy hill-climber is used to
perform subset search, using the fuzzy dependency function
both for subset evaluation and as a stopping criterion. The
method was used successfully within a range of problem
domains, including web content classification and complex
system monitoring[80].

Optimizations are given in [80,82] to improve the perfor-
mance of the method. In [83], a compact computational
domain is proposed to reduce the computational effort re-
quired to calculate fuzzy lower approximations for large
datasets, based on some of the properties of fuzzy connec-
tives. Fuzzy entropy is used in [84] to guide the search

toward smaller reducts. In [82], an alternative search algo-
rithm is presented that alleviates some of the problems en-
countered with a greedy hill-climber approach. This prob-
lem is also tackled in [85] via the use of a novel ant colony
optimization-based framework for feature selection. A ge-
netic algorithm is used in [86] for search based on the fuzzy
dependency function within a face recognition system with
promising results.

The work in [87,88] improves upon these developments
by formally defining relative reductions for fuzzy decision
systems. A discernibility matrix is constructed for the com-
putation of all such reductions. As the resulting discerni-
bility matrix is crisp, some information may have been lost
in this process. Additionally, there are complexity issues
when computing discernibility matrices for large datasets.
However, in the crisp rough set literature there have been
methods proposed that avoid this[30, 89], and similar con-
structions may be applicable here.

Feature selection algorithms, based on the generalization
of fuzzy approximation spaces to fuzzy probability approx-
imation spaces are introduced in [90]. This is achieved
through the introduction of a probability distribution on
the universe. Information measures for fuzzy indiscernibil-
ity relations are presented in [91] for the computation of
feature importance. Reducts are computed through the use
of a greedy selection algorithm similar to QuickReduct.

5 Conclusion

This paper has presented an overview of the rough set
theory and its extensions, supported with a brief discussion
of a number of representative applications of these theories.
In particular, the paper has introduced the basic rough set
concepts of indiscernibility; lower and upper approxima-
tions; positive, negative and boundary regions; attribute
dependency and significance; reducts and discernibility ma-
trix. These notions are useful to develop automated com-
putational information and decision systems.

Because of the clear advantage of rough sets in per-
forming data and information analysis without the need
of preliminary information about data (e.g. probabilities
in statistics, probabilistic assignments in Dempster-Shafer
theory, and membership functions in fuzzy set theory), de-
spite its recency, the seminal rough set theory has been
extended in various ways to further its potential. This pa-
per has given an outline of three such approaches, including
variable precision rough sets, tolerance rough sets and fuzzy
rough sets. These extensions allow the ability of the origi-
nal rough set theory in handling discrete and nominal data,
which is assumed to be true and accurate reflection of the
world, to be maximized to cope with numerical and other
contextual aspects of real world data.

To demonstrate the success of rough sets and their exten-
sions in making use of imperfect knowledge to solve practi-
cal problems, the paper has also provided a short account
of some representative applications. As an exciting devel-
oping discipline, there are nevertheless many areas in which
much research may be carried out to improve further the
mathematical rigorousness and the computational power as-
sociated with the many techniques derived from the orig-
inal theory and its extensions. For example, fuzzification
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of more rough set concepts should provide further flexible
techniques, such as fuzzy discernibility matrices and func-
tions. Indeed, by extending those concepts fundamental to
crisp rough set rule construction, approaches to fuzzy-rough
rule induction may be developed, offering more flexibility
and comprehensibility. Additionally, there is great poten-
tial for developing cross-hybrid approaches - where two sep-
arate hybrid extensions to rough set theory are themselves
hybridized. Preliminary work in this area has focussed on
the hybridization of variable precision rough sets and fuzzy-
rough sets [92]. Such research will no doubt help advance
the applications of rough sets in even wide-reaching areas.
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