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Fault Detection under Fuzzy Model Uncertainty
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Abstract: The paper tackles the problem of robust fault detection using Takagi-Sugeno fuzzy models. A model-based strategy is
employed to generate residuals in order to make a decision about the state of the process. Unfortunately, such a method is corrupted
by model uncertainty due to the fact that in real applications there exists a model-reality mismatch. In order to ensure reliable fault
detection the adaptive threshold technique is used to deal with the mentioned problem. The paper focuses also on fuzzy model design
procedure. The bounded-error approach is applied to generating the rules for the model using available measurements. The proposed
approach is applied to fault detection in the DC laboratory engine.
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1 Introduction

Nowadays, diagnostic systems are becoming an crucial el-
ement of technical and non-technical applications. Plants,
medical problems are becoming more and more complicated
and in the consequence require more sophisticated diagnos-
tic systems. In the case of the simple technical systems,
human inspection was enough but increased complexity of
the industrial systems and high level of process quality, re-
liability and safety requirements force the automation of di-
agnosis in order to make it possible to determine the place,
reason and time of the fault precisely[1−4]. The model based
fault detection strategy is the subject of intensive researches
in the area of diagnosis due to many important properties:

1) it can detect small scale faults
2) the solution is relatively cheap because sophisticated

equipment is not required, suitable software and computer
are usually enough

3) the installation of the fault diagnosis system usually
does not require any intervention in the existing system; the
installed sensors can usually be used for data acquisition.

Prompt fault detection requires accurate models of the
processes and leads directly to the problem of the system
identification[5]. Real processes are usually dynamic, non-
linear and stochastic and analytical approaches of identi-
fication are rarely suitable for them. An alternative ap-
proach proposes using artificial intelligence methods like
neural networks, fuzzy systems, neuro-fuzzy systems and
expert systems for this purpose[2, 6−10]. The paper focuses
on Takagi-Sugeno fuzzy systems[11]. The attractiveness of
the fuzzy approach arises from the fact that it can be ap-
plied even when phenomenological model of the system is
unavailable. Qualitative and quantitative knowledge may
be used to tune the model in this case[12−15]. Two types
of fuzzy systems are commonly used for modelling purpose:
Mamdani fuzzy system and Takagi-Sugeno fuzzy system.
Generally, Takagi-Sugeno structures are frequently used if
the knowledge can be extracted from raw data, and Ma-
madani systems are preferred when the knowledge is given
by human experts in the form of the linguistic expressions.
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The main problem which arises during Takagi-Sugeno sys-
tem design is the question of a suitable number of rules
which should ensure the smallest modelling error. It is usu-
ally a trade off between the complexity of the system and its
accuracy. The existing methods are usually time consuming
i.e., genetic algorithms, clustering algorithms, partitioning
algorithms and do not assure the accuracy of the model. A
new method for structure design based on bounded-error
approach (BEA) is developed in this work to overcome the
discussed problem[16−18].

Another problem considered in this paper arises from
model uncertainty. In real situations, regardless of the
kind of identification method used, there is always a model-
reality mismatch, which arises from wrong assumptions
about the structure of the model or the type of distur-
bances which corrupt measurements. The uncertainty of
the model can dramatically decrease the reliability of fault
detection. Two main approaches can be used to overcome
this problem: an active approach, which is based on ro-
bust observers[3, 8, 19], and a passive approach, which is
based on the adaptive threshold technique[6, 20, 21]. Here the
BEA technique is adapted and employed to build a robust
model-based fault detection system. The main advantage
of this approach is that it does not consider strong assump-
tions about the type of disturbances like, e.g., statistical
methods[5]. It assumes only that bounds on the noise signal
are available[17, 18]. Next, the method determines the fea-
sible set of parameters that are consistent with the model,
the measured data, and disturbance bounds.

The paper is organized as follows. In Section 2, the
elementary information concerning model based fault de-
tection using the Takagi-Sugeno fuzzy model is presented.
Section 3 presents the algorithm for computing the adap-
tive threshold. Section 4 describes the algorithm proposed
for tuning the structure of the fuzzy model. Section 5 con-
tains experimental results obtained for fault detection and
the last section is devoted to concluding remarks.

2 Fault detection using fuzzy model

The idea of model based fault detection assumes a com-
parison of the model output with real output values mea-
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sured from the process, thereby generating residuals[2, 22].
Residuals are usually generated as the difference between
the model and system outputs. It means that the residual
signal should be close to zero in the fault-free mode, oth-
erwise, significantly different from zero. Ideally the resid-
ual signal should carry only information about faults but,
practically, it also contains noise, which is the effect of
model uncertainty. It is necessary in this case to establish
thresholds on residuals to avoid false alarms. If the resid-
ual signal exceeds the range defined by the thresholds, the
alarm is activated, otherwise the system is working in fault-
free mode. The proposed fault detection approach utilizes
Takagi-Sugeno fuzzy system to implement necessary mod-
els. The knowledge extracted from data is stored in the
form of fuzzy rules:

Ri : IF x is Ai THEN yi = rT
i pi (1)

where x is the vector of the global network inputs, Ai is
the multivariate fuzzy set, yi is the output of the rule, ri

is the vector of the local linear model inputs, pi is the vec-
tor of the local linear model parameters, and k is the index
of the rule. Fuzzy sets have usually Gaussian membership
functions and here such membership functions are consid-
ered. Global output of the fuzzy model is obtained using
a defuzzification algorithm. The crisp value of the output
can be viewed as a composition of the responses of all rules:

y =

Pn
i=1 µkyiPn

i=1 µi
(2)

where y is the global output of the network, µi is the mem-
bership degree achieved for i-th rule, yi is the output of the
i-th rule (local linear model), n is the number of rules. It
is worth noticing that the number of rules determines the
number of local linear models responsible for piecewise lo-
cal linear approximation of the non-linear system. It is very
important to include dynamics in the fuzzy models because
the real processes are usually dynamic. It can be done by
introducing into the input vector ri the delayed inputs ui

of the local model and delayed output of the local output
yi, i.e., ri = [ui(k), ui(k−1), . . . , ui(k−na), yi(k−1), yi(k−
2), . . . , yi(k−nb)]. The inference mechanism used in Takagi-
Sugeno model is realized by the SUP − T composition:

µB′(y) = sup
x
{Tx,y[µA′(x), µR(x, y)]} (3)

where µB′(y) is the singleton fuzzy set, µA′(x) is the single-
ton fuzzy set which represent crisp input values, µR(x, y) is
the fuzzy relation, which represents the rule base and Tx,y

is the T-norm defined as the algebraic product. The struc-
ture of the Takagi-Sugeno fuzzy model presented above is
used in the considerations presented in the next points of
this paper.

3 Uncertainty of the fuzzy model

Robust fault detection under the model uncertainty is
the main requirement for modern fault detection systems.
Robustness in this case is considered as the insensitivity of
the fault detection system to model uncertainty. Methods
like parity relations and observers with the unknown input
ensure such requirement[3, 8, 19, 23]. The main idea behind

these algorithms is a special design method which elimi-
nates the influence of the unknown input (i.e. disturbances)
on the residual signal, thus the fault detection system is ro-
bust against disturbances. Unfortunately, these methods
are applicable to a narrow class of systems in the case of
non-linear problems. The alternative passive approach is
based on the adaptive threshold technique[6, 20, 21, 24]. The
idea behind this approach is the acceptance of model im-
perfection and the examination of the influence of this fact
on the residual signal. In order to avoid false alarms gener-
ated by disturbances or model uncertainty, thresholds are
defined for the residual signal. The interval set by the
thresholds defines the values of residuals that correspond
to the fault-free mode. The adaptive threshold method is
based on the assumption that the uncertainty of the model
can be presented in the form of the confidence interval for
the output of the model. The confidence interval is deter-
mined using the admissible set of parameters, which may
be calculated using the statistical approach for parameters
determined by the least square (LS) method[21]. Unfortu-
nately, the usage of the method is restricted by the severe
assumptions concerning the distribution and expectation of
disturbances. These assumptions are rarely met in the real-
ity (normal distribution and expectation equal to zero), and
the application of the method without satisfied assumptions
usually leads to a strongly inaccurate model, which in diag-
nosis is unacceptable. To overcome the mentioned problem
an alternative approach in the form of the BEA method
is adopted to calculate the admissible set of parameters.
The method requires only information about the range of
disturbances to work properly. However, it can be effec-
tively applied only to LP systems[17]. The application of
the BEA algorithm to computing the confidence interval of
the Takagi-Sugeno fuzzy model output requires to establish
some assumptions in order to view the model in the form
of the LP system[25]. The main assumption is based on the
fact that the parameters of membership functions of fuzzy
sets are known. An appropriate selection of the values of
these parameters has essential influence on the uncertainty
of the whole fuzzy model. Wrong values of these parame-
ters can significantly increase model uncertainty, thus the
model can be unsuitable for diagnostic tasks. The problem
of tuning these parameters is the main subject of the next
section, where the details of the proposed algorithms are
presented.

In order to present the method let us consider the follow-
ing Takagi-Sugeno fuzzy model:

y(k) =

nX
i=1

φi(k)yi(k) (4)

where yi(k) is the output of the i-th rule and

φi(k) =
µi(k)Pn

j=1 µj(k)
. (5)

The model described by (4) can be viewed in the form of
LP system:

y = xT(k)p (6)
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where

x(k) =

2
66664

φ1(k)r1(k)

φ2(k)r2(k)
...

φn(k)rn(k)

3
77775

, p =

2
66664

p1

p2

...

pn

3
77775

if parameters of the fuzzy sets are treated like constant val-
ues. The output error is given by the following formulae:

ε(k) = y′(k)− xT(k)p (7)

where e(k) is the error, and y′(k) is the output of the sys-
tem. The error is bounded by means of the following in-
equalities:

εmin(k) ≤ ε(k) ≤ εmax(k). (8)

Thus the admissible set of parameters for N data points is
given by the following expression (see Fig. 1):

P ={p ∈ Rn | y′(k)− εmax ≤ xT(k)p ≤
y′(k)− εmin, k = 1, . . . , N} (9)

and the confidence interval for the output of the system is
described by means of the following inequalities:

xT(k)pmin(k) + εmin ≤ y′(k) ≤
xT(k)pmax(k) + εmax (10)

where

pmax(k) = arg max
p∈W

xT(k)p (11)

pmin(k) = arg min
p∈W

xT(k)p. (12)

The minimum and maximum values for the following pa-
rameters are determined using the linear programming
technique[18]. The confidence interval can be directly used
to calculate adaptive threshold for residual signal:

er(k) = y′(k)− y(k). (13)

Fig. 1 Admissible set of parameters P

Finally, adaptive threshold is described by the following
inequalities:

xT(k)pmin(k) + εmin(k)− y(k) ≤ er(k) ≤
xT(k)pmax(k) + εmax(k)− y(k). (14)

The presented approach does not take into account the fact
that not only the output variable y(k) is uncertain but also
all input variables x(k) can be uncertain. Such situation
is common due to the fact that input variables are usually
measured so they can be known with the defined accuracy.
If this fact is not considered the threshold computed for the
output variable does not reflect the real model uncertainty
so the false alarms can occur.

The problem of computing the feasible set of param-
eters when some or all explanatory variables, as well as
the output, are uncertain is usually called error-in-variables
(EIV) problem. The study of this problem can be found in
[18]. In this work the EIV parameter-bounding algorithm is
adapted for Takagi-Sugeno fuzzy model in order to compute
the adaptive threshold. The real unknown input vector can
be seen as the difference between the known values of inputs
and their errors:

x′(k) = x(k)− εx(k). (15)

Let us assume additionally that the error εx(k) is bounded:

εmin
x (k) ≤ εx(k) ≤ εmax

x (k) (16)

therefore, the admissible set of parameters P is given by the
following inequalities:

P ={p ∈ Rn | y′(k)− εmax(k) + εx
T(k)p ≤

≤ xT(k)p ≤ y′(k)− εmin(k) + εx
T(k)p

k = 1, . . . , N}. (17)

Constraints that determine the admissible set of parameters
depend upon the unknown vector of parameters P, which
makes it difficult to determine the estimates of these pa-
rameters. Nevertheless, from the practical point of view,
the procedure for calculating the estimates requires only
information about the sign of the expression εx

T(k)p. For
this purpose each parameter is viewed in the form of the
difference of two positive parameters:

pi = p′i − p′′i , p′i, p
′′
i ≥ 0. (18)

Such a modification of the task lets us replace the expres-
sion εx

T(k)p with an expression that satisfies the following
constraints:

εx
T(k)p ≤ (εx

max(k))Tp′−
(εx

min(k))Tp′′. (19)

From this modification there arises a new admissible set of
parameters P:

P ={p ∈ Rn | y′(k)− εmax(k)− (εx
max(k))Tp′+

(εx
min(k))Tp′′ ≤ xT(k)(p′ − p′′) ≤

y′(k)− εmin(k)− (εx
max(k))Tp′+

(εx
min(k))Tp′′, k = 1, . . . , N}. (20)
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For such an admissible set of parameters the linear pro-
gramming technique can be employed analogously to ap-
proach with certain input variables. The difference is re-
vealed only in constraints defined by measurements, which
are not parallel hyperplanes now and each hyperplane must
be considered separately. The admissible set of parameters
P expressed by (20) allows determining the confidence in-
terval for the output signal of the model in the form of the
following inequalities:

[x(k)− εx
max(k)]Tp′min(k)−

[x(k)− εx
min(k)]p′′min(k) ≤ (x′(k))Tp ≤

[x(k)− εx
min(k)]Tp′max(k)−

[x(k)− εx
max(k)]p′′max(k) (21)

where

(p′min(k), p′′min(k)) =

arg min
(p′,p′′)∈W

`
[x(k)− εx

max(k)]Tp′−

[x(k)− εx
min(k)]p′′

´
(22)

(p′max(k), p′′max(k)) =

arg max
(p′,p′′)∈W

`
[x(k)− εx

max(k)]Tp′−

[x(k)− εx
min(k)]p′′

´
. (23)

The confidence interval for the output of the simulated sys-
tem can be computed easily if the confidence interval for
the output of the model is known:

[x(k)− εx
max(k)]Tp′min(k)−

[x(k)− εx
min(k)]p′′min(k) + εmin(k) ≤

y′(k) ≤ [x(k)− εx
min(k)]Tp′max(k)−

[x(k)− εx
max(k)]p′′max(k) + εmax(k). (24)

Finally, the adaptive threshold can be easily deduced from
the uncertainty of the system output:

[x(k)− εx
max(k)]Tp′min(k)−

[x(k)− εx
min(k)]p′′min(k) + εmin(k)− y(k) ≤

er(k) ≤ [x(k)− εx
min(k)]Tp′max(k)−

[x(k)− εx
max(k)]p′′max(k) + εmax(k)− y(k). (25)

4 Takagi-Sugeno fuzzy model design
procedure

The main problem of fuzzy model design is the choice
of the significant number of rules that ensure the accuracy
of the model. Let us consider that N input-output mea-
surements which describes the behavior of the process are
given. The idea of the proposed approach is to explore these
data in order to find local approximately linear dependen-
cies and next for each found dependence one linear model
in the form of the fuzzy rule is generated. The algorithm
requires the special evaluation function that decides if the
set of the measurements compose the approximately linear

dependence. For this purpose the algorithm based on BEA
algorithm is developed. Let us consider the simplified sit-
uation, when one linear dependence must be found in the
set of data points. First, the maximum acceptable error ε
of the linear approximation must be given. Let us define
the linear model:

y = rT(k)p. (26)

The admissible set of parameters consistent with the mea-
surements and chosen error can be defined by the following
set:

P ={p ∈ Rn | y′(k) + ε ≤ rT(k)p ≤ y′(k)− ε

k = 1, . . . , N}. (27)

It is possible to generate for each single data point the ad-
missible set of parameters Sk, which has the form of the
strip bounded by two parallel hyperplanes. The set of N
data points may be defined as a local linear dependence if
the generating data lay in the contiguity and the product
of their admissible sets is not empty, otherwise data points
are not consistent for the chosen error ε. The procedure is
recurrent, and is repeated until the chosen data point passes
the test of consistency with all previously tested points, oth-
erwise the procedure is stopped. The set of all data points,
which passes the test of consistency defines the local linear
dependence. The parameters of this model can be calcu-
lated by determining the geometrical center of the admissi-
ble set of parameters. Four sample steps of the procedure
are shown in Fig. 2. Three first data points are consistent
each other but the fourth is not consistent with the previ-
ous data and can not be included to detect approximately
linear dependence. In this case procedure stops and model
is designed using only consistent measurements. Proposed
algorithm is modified to find multiple approximately linear
dependencies.

Fig. 2 Detection of linear dependencies in measurements (four
sample steps)
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Fig. 3 Algorithm for detection of approximately linear
dependencies

The steps of the modified algorithm are shown in Fig. 3,
where the following notations are introduced: X is the set
of all data points, L is the set of data points that compose
the local linear dependence, s is a data point tested for the
consistency with elements of the set L, P is the admissible
set of parameters generated by the data points from the
set L, P is the admissible set of parameters generated by
measurement s. The process is repeated until the set X is
empty or chosen data point is not consisted with any found
linear dependence. The results of this procedure are as fol-
lows: the number of the local linear dependencies, ranges in
the input-output space of the linear dependencies and the
parameters of linear models that approximates these linear
dependencies. Moreover, the ranges of the local linear de-
pendencies are used to determine the centers and widths
of Gaussian fuzzy sets thus algorithm can be used to de-
termine the structure of Takagi-Sugeno fuzzy model and to
estimate its parameters[21].

5 Experimental results

Electrical Direct Current (DC) engines are very often
used in many industrial applications. The changing con-
ditions of operation and intensive exploitation result in sys-
tematic wearing off of individual parts of engines. This
phenomenon can be interpreted as an incipient fault, which
in the final phase changes to an abrupt fault and causes big
damages in the engine. It is very important in this case to
detect the fault at an early stage and apply a special proce-
dure to avoid the fault so that the worn off elements can be
replaced. The faults considered manifest themselves at an
early stage by a decreased efficiency, but finally, if the fault
is not detected some parts of the engine can be damaged.
Thus it is important to develop a reliable fault detection al-

gorithm which should detect even small changes in system
behavior.

The effectiveness of the robust fault detection method
using the Takagi-Sugeno fuzzy models and adaptive thresh-
olds has been examined using a laboratory stand. The lab-
oratory stand is prepared to control the rotational speed
of a DC engine with a changing load. It consists of five
main elements: DC engine M1, DC engine M2, two engine-
speed indicators, and clutch K. The shaft of the engine M1

is connected with the identical engine M2 by the clutch K
and engine M2 works in the generator mode. The fuzzy
model of the engine M1 was designed in order to build a
fault detection system. Experiments with different struc-
tures of dynamic consequences show that the best results
can be obtained using the following linear consequences for
fuzzy rules:

yi(k) = b1u(k − 1) + b2u(k − 2) + b3u(k − 3) (28)

where yi(k) is the output of the ith rule, which should be
interpreted as the rotational speed. The input variable u(k)
is a voltage responsible for controlling the rotational speed.

Fig. 4 Fuzzy sets after tuning procedure

Fig. 5 Model and process outputs as well as corresponding
confidence interval for fault-free mode
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Table 1 Types of faults

No Description S M B I

f1 Tachometer fault • • • •
f2 Mechanical fault of the engine • • •

The fuzzy model built has only one global input vari-
able u(k). In order to identify the structure of the fuzzy
model and its parameters, the input-output data were gen-
erated using the prepared input signal. The experiment
was done using an open-loop control scheme. All variables
were normalized to the range [-1,1]. The generated data
were used to generate the structure of the model using the
algorithm developed in Section 4. It was assumed that a
single linear model that describes the consequence of the
fuzzy rule can produce the maximum error on the level
0.04. For such a value of the error the algorithm generated
3 fuzzy rules, which were then included in the rule base
(see Fig. 4). The behavior of the model was tested using
the data that were not used during the design procedure.
The model was tested in the open-loop control environment
(see Fig. 5) and in the closed-loop control environment.

Fig. 6 Faulty scenario: small fault f1 – process and model
output

Fig. 7 Faulty scenario: small fault f1 – residuals

Fig. 8 Faulty scenario: incipient fault f1 – process and model
output

Fig. 9 Faulty scenario: incipient fault f1 – residuals

A set of potential faults was defined for the engine in
Table 1. It was assumed that faults can be incipient (I)
or abrupt, and abrupt faults are divided into small (S),
medium (M) and big (B) faults. The faults were simulated
artificially using the elements of the laboratory system. It
was impossible to generate real faults in the laboratory envi-
ronment. The faults are divided into two groups: tachome-
ter faults and mechanical faults of the engine M1, which
manifest themselves as a decreasing efficiency of the engine.
Tachometer faults were simulated by disturbing its output
signal using different types of noise. Such disturbed samples
given by the tachometer were used to calculate the control
signal in the closed-loop control scheme. In order to gener-
ate the second fault, the engine M2 connected with the en-
gine M1 via the clutch K was used to simulate an additional
faulty load. The aim of such an approach was to simulate
the incipient mechanical fault in the engine M1, i.e., a worn-
off bearing. The effectiveness of the designed fault detection
system was tested using data generated during fault simula-
tions. Faulty data were prepared for all designed scenarios.
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Fig. 10 Faulty scenario: incipient fault f2 – process and model
output

Fig. 11 Faulty scenario: incipient fault f2 – residuals

The sample results, which present the output of the real
object, model output and residuals, are presented in the
figures. Sampling time equal to 1 s is used for all figures.
The data for a small fault of the tachometer are presented
in Figs. 6 and 7. The fault is simulated at the moment 45
(tf ), and is manifested as small random noise that corrupts
the tachometer output. The fault is detected at the mo-
ment 58 (td)because the residual signal exceeds the interval
determined by adaptive thresholds. It is important to de-
tect not only abrupt and big faults, but also incipient fault
from the point of view of effective diagnostics. Such faults
are caused by the slow and progressive process of the wear-
ing off of the parts of the engine so that faults are incipient
and their scale is increasing with time, thus it is hard to
detect them at an early stage. In order to illustrate the ef-
fectiveness of the developed methods for fault detection of
incipient faults, experimental results obtained for the incip-
ient fault f1 are presented in Figs. 8 and 9. Fault detection
of the incipient fault f2 is illustrated by the data presented
in Figs. 10 and 11. The fault detection system built is able
to detect all simulated faults.

6 Concluding remarks

The main purpose of this paper was to develop robust
fault detection scheme using the Takagi-Sugeno fuzzy mod-
els. This was achieved with the use of the adaptive thresh-
old technique and BEA algorithm. Some assumptions were
established to view the Takagi-Sugeno model in the form of
LP system. Next BEA algorithm was applied to determi-
nation of admissible set of parameters for the fuzzy model.
Unfortunately, the computations required to determine all
vertices W of convex polyhedron are so time and memory
consuming that it is hard to employ the classical BEA al-
gorithm for complicated models. In this case the methods
that approximate the actual set P by the area, which has
the simplified shape, should be employed[17, 18]. It has to
be also mentioned that the presented approach allows to
determine real feasible set of parameters only in the static
case or in the case of dynamic models, which do not have
autoregressive part. The future work will concentrate on ex-
tension of the presented approach for Takagi-Sugeno fuzzy
models with consequences in the form of ARX models.
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