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Abstract: In this study an indirect adaptive sliding mode control (SMC) based on a fuzzy logic scheme is proposed
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1 Introduction

Most complex dynamic systems exhibit nonlineari-
ties and uncertainties that are difficult to describe with
mathematical models. In addition, the mathematical
treatment of non-linear systems compared to linear sys-
tems is not well understood. Although control theory
is well developed for linear systems, there is still no
universal control solution for many kinds of nonlinear
system.

Since the initiative work of Mandani[1] based on the
fuzzy set theory of Zadeh[2], fuzzy logic control (FLC)
has been widely applied to deal with many practical
problems. FLC is easy to understand and simple and
cheap to implement. FLC is used to utilise the quali-
tative knowledge of a system to design a practical con-
troller. FLC is generally applicable to plants that are
ill modelled, but have qualitative knowledge from ex-
perienced operators available to aid design. FLC is
particularly suitable for systems with uncertain and/or
complex dynamics. However, despite its great successes
in commercial and industrial practices, FLC has been
the target of criticism for its lack of systematic design,
mathematical rigor, and concrete stability analyses.

Sliding mode control (SMC) for variable structure
systems (VSS) is a well-applied technique for systems
whose accurate mathematical models are difficult to
obtain. It was first proposed and elaborated in the
early 1950s in the former Soviet Union by Emelyanov
and several co-researchers[3∼5]. From then on, SMC
has expanded into a general design method examined
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for a wide spectrum of system types including non-
linear, multi-input/multi-output (MIMO), discrete
time, large scale and infinite dimension and stochas-
tic systems. To resolve real problems SMC has been
adopted in a wide variety of engineering systems. A
great deal of efforts has been put on establishing both
theoretical VSS concepts and practical applications. A
comprehensive survey paper on VSS was published by
Hung, et al.[6] which is highly quoted. Some of the con-
cepts and theoretical advances in VSS are covered in
some literatures, such as DeClarlo, et al.[7], Slotine and
Li[8], Utkin[9], and Zinober[10]. Professor Vadim Utkin
delivered a paper on the 6th IEEE Workshop on Vari-
able Structure Systems entitled “VSS Premise in XX
Century: Evidence of a Witness”[11], which sought to
trace the evolution of VSS theory from its early devel-
opments in the former USSR to its current state, and
highlighted the emergence and later abandonment of
certain trend/paradigms as the theory evolved.

The most distinguishing property of SMC is its
robustness, that is, closed loop systems are com-
pletely insensitive to modelling uncertainties, time
varying parameter fluctuations, and external distur-
bances. Strong robustness comes from the fact that
SMC makes use of a designed sliding surface in state
space, and produces switched control settings with con-
sideration for observed system input-output behaviour,
a boundary of modelling uncertainties, and unknown
disturbances[8]. In spite of its wide applications, pure
SMC has exposed some obvious disadvantages. The
first is chatter, which is highly undesirable in practi-
cal implementations, because it may excite high fre-
quency dynamics in unmodeled parts of a system and
cause system instabilities or even disasters. The other
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is that, in a practical implementation, it is difficult to
identify an approximation of system models as well as
model uncertain boundaries and external disturbances.
One commonly used chatter attenuating method in
conventional control is to introduce a boundary layer
in the vicinity of a sliding surface which achieves a
trade-off between tracking precision and robustness in
a system[8]. Another method is to integrate FLC into
SMC[12]. FLC can perform a similar function to that
of a boundary layer.

Recently the synthesis of algorithms of modern con-
trol theory and artificial intelligence has been studied
to upgrade the performance of conventional SMC. Kay-
nak et al.[13] published a survey paper on the fusion
of computationally intelligent methodologies and SMC.
Fuzzy sliding mode control, which takes the features of
both SMC and FLC to overcome the disadvantages of
chatter and enhance the robustness of controllers, is
one such example[14∼16].

Meanwhile adaptive control techniques have also
successfully advanced in tackling control problems for
uncertain nonlinear systems[17,18]. Many contributions
have been made in the integration of FLC and SMC
based on adaptive schemes, most of which take the
benefits of fuzzy universal approximation theorem[19]

to incorporate expert information systematically and
guarantee various stable criteria. In general the param-
eters and structures of plant to be controlled present
large uncertainties and variations. The objective of the
design of a controller is to maintain persistent perfor-
mance of system in the presence of these uncertainties
and variations, with adaptive control aimed at achiev-
ing this objective. Therefore advanced fuzzy control
also should be adaptive in order to maintain desired
performance. Fuzzy adaptive control, which takes lin-
guistic information from human operators as an advan-
tage over conventional adaptive control, is especially
suitable for systems which are subject to high degrees
of uncertainty.

The research work of Su and Stepanenko[20], Yoo
and Ham[21], Tong et al.[22], Chai and Tong[23], Wang
et al.[24], and Chan et al.[25] apply fuzzy basis func-
tions to approximate unknown system parameters in
the design of SMC control law, in which the weights
of fuzzy basis functions are adaptively adjusted ac-
cording to fuzzy universal approximation theorem, and
proof of system stability is presented accordingly. How-
ever these schemes have been applied only to a class
of single-input/single-output nonlinear systems. Their
principles should also be extendable to MIMO systems.

Chang[26] proposed a hybrid adaptive robust track-
ing control scheme for MIMO nonlinear systems based
on a combination of H∞, VSS control algorithm and
FLC design where system uncertainties are approx-

imated with adaptive fuzzy approximators. Li and
Tong[27] and Tong and Li[28] published their studies
to deal with MIMO plants with unavailable state vari-
ables based on fuzzy adaptive SMC.

In this study, based on fuzzy universal approxima-
tion theorem an indirect fuzzy adaptive control scheme
is proposed for integration with SMC for the control
of MIMO non-linear systems which have modelling un-
certainties and parameter fluctuations. The reaching
law method proposed by Hung and Gao[6] is adopted
here. The stability of the control algorithm is proved
in terms of a Lyapunov theorem, with tracking error
converging to the vicinity of zero.

The remainder of the paper is organised as follows.
Section 2 provides the objective of system control. A
general form of MIMO nonlinear system is presented in
a set of differential equations; the preliminary knowl-
edge of sliding mode control and fuzzy systems together
with fuzzy basis functions and fuzzy universal approx-
imation theorem and some related definitions and lem-
mas are briefly reviewed. Section 3 proposes the de-
sign scheme for a MIMO fuzzy adaptive sliding mode
controller for nonlinear systems. The stability of the
scheme is proved in terms of a Lyapunov theorem in two
cases. Section 4 provides two case studies to demon-
strate the effectiveness of the proposed control scheme
in simulation. Section 5 draws some conclusions.

2 Preliminaries

2.1 Problem statement

Consider a general form of MIMO nonlinear system
as follows[27]:

ẋ
(ni)
i = fi(x) +

p
∑

j=1

gij(x)uj + di(t)

yi = xi (i = 1 · · · p) (1)

where x1, · · · , x
(n1−1)
1 , · · · , xp, · · · , x

(np−1)
p are system

states, and y1, · · · , yp are outputs of the system,
u1, · · · , up are inputs to the system, f1(x), · · · , fp(x),
are system functions, gij(x) are system gains and
d1, · · · , dp are system disturbances.

The model (1) can be rewritten in matrix form as:

ẋ = Ax + B[F (x) + G(x)u + d]

y = Cx (2)

where:

x = [x1, · · · , x
(n1−1)
1 , · · · , xp, · · · , x

(np−1)
p ]

y = [y1, · · · , yp]
T

A = diay[A1, · · · , Ap]

B = diay[B1, · · · , Bp]
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C = diay[C1, · · · , Cp]

u = [u1, · · · , up]
T

d = [d1, · · · , dp]
T

and:

Ai =













0 1 · · · 0
0 0 · · · 0
...

... · · ·
...

0 0 · · · 1
0 0 · · · 0













ni×ni

(i = 1, · · · , p)

Bi = [0 0 · · · 0 1]Tni

Ci = [1 0 · · · 0 0]ni

F (x) = [f1(x), · · · , fp(x)]T

G(x) = [G1, · · · , Gp]
T

Gi(x) = [gi1, · · · , gip]
T (i = 1, · · · , p)

The following assumptions are made in the rest of
the paper:

A1. The system state vector x ∈ Rn(n =

p
∑

i=1

ni)

in (2) is measurable.
A2. The system function vector F (x) = [f1(x),

· · · , fp(x)]T is not known exactly but is bounded, that
is ‖ F (x) ‖6 F0(x), where F0(x) is a known vector,
and its elements are smooth, that is, fi(x)s(i = 1 · · ·n)
in F (x) are smooth functions.

A3. The system gain matrix G(x) is not known
exactly, but bounded by 0 < Gm(x) 6 G(x) 6 GM (x),
where Gm(x) and GM (x) are known matrices, G(x) is
nonsingular, and gij(x)s(i, j = 1 · · · p, p) in G(x) are
smooth functions.

The objective of this research is to design an adap-
tive controller for the general form of non-linear MIMO
system of (2) despite plant uncertainties and external
disturbances, which guarantees boundedness of all the
variables of a closed loop system and outputs track-
ing of the given reference signal yr = byr1

, · · · , yrp
cT .

Let Yr = [yr1
, · · · , y

(n1−1)
r1

, · · · , yrp
, · · · , y

(np−1)
rp ]T and

assume that there is a compact set Ωr such that Yr(t) ∈
Ωr, ∀t > 0.

2.2 Sliding mode control

The design of a sliding mode control system can
be divided into two steps: step one is the selection of
a proper sliding function while step two is the design
of a control law. In step one, a sliding (or switching)
function vector with p dimensions will be selected for
a system with p inputs. In step two, a proper sliding
mode control law vector will be designed to meet the
requirements of a sliding mode reaching condition.

The sliding function vector is designed as:

S = [s1, · · · , sp]
T (3)

where si = CT
i Ei(i = 1, · · · , p), and Ci = [ci1, · · · ,

ci(ni−1), 1]T is the Hurwitzian coefficient vector, Ei =

[ei, · · · , e
(ni−1)
i ]T is a tracking error vector whose ele-

ments are defined by the following equations:

ei = xi − yri

... (i = 1, · · · , p) (4)

e
(ni−1)
i = x

(ni−1)
i − y(ni−1)

ri

The following equations can be obtained with a
derivative of (3):

Ṡ = [ṡ1, · · · , ṡp]
T (5)

and:

ṡi = CiĖi =

ni
∑

j=1

ci,je
(j)
i

=

ni−1
∑

j=1

(ci,je
(j)
i ) + e

(ni)
i

=

ni−1
∑

j=1

(ci,je
(j)
i ) + fi(x) +

p
∑

j=1

gij(X)uj + di(t) − y(ni)
ri

= Ri + fi(x) +

p
∑

j=1

gij(X)uj + di(t) − y(ni)
ri

(6)

where Ri =

ni−1
∑

j=1

(ci,je
(j)
i ).

Equation (5) can then be written in matrix form as:

Ṡ = R + F (x) + G(x)u + d − y′ (7)

where R = [R1, · · · , Rp]
T and y′ = [y

(n1)
r1

, · · · , y
(np)
rp ]T .

Using the reaching law method[6]:

Ṡ = −H(S)

and equation (7), the following can be obtained:

R + F (x) + G(x)u + d − y′ = −H(S)

where:

H(S) = Qsgn(S) + KWH(S)

and:

Q = diagbq1, · · · , qpc, qi > 0, (i = 1, · · · , p)

sgn(S) = [sgn(s1), · · · , sgn(sp)]
T

K = diagbk1, · · · , kpc, ki > 0, (i = 1, · · · , p)

WH(S) = [wh1(s1), · · · , whp(sp)]
T



54 F. Qiao et al./International Journal of Automation and Computing 1 (2004) 51-62

in which qi, ki(i = 1, · · · , p) are designed parameters
and siwhi(si) > 0 and whi(0) = 0.

Here, the reaching law with a constant plus propor-
tional rate is applied, that is whi(si) = si(i = 1, · · · , p).

If the system function F (x) and the control gain
matrix G(x) are known, and G(x) is nonsingular, that
is G(x) is invertible, and the external disturbance x is
known beforehand, from (8), the control law vector u
can easily be determined by:

u = −G−1(x)(R + F (x) + d − y′ + H(S)) (9)

It is easy to prove that the control law so designed
can force system state to track the given reference, and
that the tracking error will converge to the vicinity of
zero within a finite time period.

But in practical applications, it is usually difficult
to exactly model a plant in mathematical equations, or
sometimes, it is impossible to obtain a model. In or-
der to design the control law in (9), the fuzzy universal
approximation theorem is applied to approximate its
parameters.

2.3 Fuzzy system

A fuzzy system consists of four principle parts as
shown in Fig.1, which are a fuzzifier, a fuzzy rule base,
a fuzzy inference engine and a defuzzifier. The four
parts of a fuzzy system will be detailed here with a
multi-input/single-output structure: U ⊂ Rn → R,
where U is a compact set. A multi-output system can
be separated into a group of single-output systems.

Fig.1 The basic configuration of a fuzzy system

In the fuzzy system in Fig.1, the fuzzifier performs
a mapping of the variables x = (x1, x2, · · · , xn)T from
the crisp input domain U ⊂ Rn to the fuzzy domain
defined in U characterised by membership function
µF : U → [0, 1] , and labelled with linguistic language,
such as “Large”, “Medium” and “Small”. The most
commonly used fuzzifier is a “singleton fuzzifier”.

A Fuzzy Rule Base consists of a set of linguistic
rules in the form of “IF a set of conditions are satis-
fied, THEN a set of consequences are inferred.”

For a fuzzy rule base with N rules, we have:

Rj : If x1 is Aj
1 and x2 isAj

2

and · · ·and xn is Aj
n, then z is Bj (10)

where j = 1, 2, · · · , N (N is the number of fuzzy
rules), z is the output of the fuzzy system, and Aj

i

and Bj are linguistic terms characterised by fuzzy
membership functions µ

A
j

i

(xi) and µBj (z), respec-

tively. Each Rj can be viewed as a fuzzy implication

Aj
1 × · · · × Aj

n → BJ , which is a fuzzy set in U × R
with µ

A
j

1
×···×A

j
n→Bj (x, z) = µ

A
j

1

(x1)⊗ · · ·⊗µ
A

j
n
(xn)⊗

µBj (z). ⊗ is a t-norm operation. Commonly used t-
norm operations are “product” and “min”.

The Fuzzy Inference Engine is decision-making logic
which employs fuzzy rules from the fuzzy rule base, to
determine a mapping from the fuzzy sets in the input
space U to the fuzzy set output space R.

Let Ax be an arbitrary fuzzy set in U , then each
Rj determines a fuzzy set Ax ◦ Rj in R based on the
sup-star composition:

µAx◦Rj
(z) = sup

x∈U

bµAx
(x) ⊗ µ

A
j

1
×···×A

j
n→Bj (x, z)c

= sup
x∈U

[µAx
(x) ⊗ µ

A
j

1

(x1) ⊗ · · · ⊗ µ
A

j
n
(xn) ⊗ µBj (z)]

(11)

The Defuzzifier performs a mapping from fuzzy to
crisp domain. There are many defuzzification tech-
niques, such as max criterion (MC), mean of maximum
(MM) and centre of gravity (COG).

If COG is chosen, the crisp output of the system
can be obtained with:

z =

N
∑

j=1

µAx◦Rj
(wj)wj

N
∑

j=1

µAx◦Rj
(wj)

(12)

where wj is the point in R at which µBj (z) achieves its
maximum value (it is assumed that µBj = 1).

The number of fuzzy sets, defined in the input and
output universes of discourse, and the number of fuzzy
rules in the fuzzy rule base heavily influence the com-
plexity of a fuzzy system, where complexity includes
computational complexity, i.e. the computational re-
quirements of the fuzzy system, and space complexity,
i.e. the storage requirements of the fuzzy system. The-
se parameters can be viewed as fuzzy system structure
parameters. In general, the larger these parameters,
the more complex the fuzzy system, and the higher
the expected performance of the fuzzy system. Hence,
there is always a trade off between complexity and ac-
curacy in the choice of these parameters; and their
choice is usually quite subjective.

The linguistic statements of fuzzy rules are the
heart of a fuzzy system in the sense that it is these
linguistic statements that contain most of the infor-
mation concerning the fuzzy system design; all other
design parameters assist in the effective representation
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and use of this information. The fuzzy rules usually
come from two sources: human experts and training
data.

2.4 Fuzzy universal approximation

The set of the fuzzy system described above with
a singleton fuzzifier, product inference, and Gaussian
membership function consists of functions of the fol-
lowing form:

z(x) =

N
∑

j=1

(

n
∏

i=1

µ
A

j

i

(xi)
)

θj

N
∑

j=1

(

n
∏

i=1

µ
A

j

i

(xi)
)

(13)

The Gaussian membership function µ
A

j

i

(xi) is de-

fined by:

µ
A

j

i

(xi) = exp
[

−
(xi − ζj

i

σj

)2]

(14)

where ζj
i , σj are real-valued parameters, and θj is the

point in R at which µBj (y) achieves its maximum value.

Taking

(

n
∏

i=1

µ
A

j

i

(xi)
)

N
∑

j=1

(

n
∏

i=1

µ
A

j

i

(xi)
)

as basis functions and θj

as constants, z(x) in (13) can be viewed as a linear
combination of the basis functions.

Fuzzy basis functions (FBFs) are defined as follows:

gj(x) =

(

n
∏

i=1

µ
A

j

i

(xi)
)

N
∑

j=1

(

n
∏

i=1

µ
A

j

i

(xi)
)

, j = 1, · · · , N (15)

where µ
A

j

i

(xi) are Gaussian membership functions as

described in (14). This means that the fuzzy system in
(13) is equivalent to an FBF expression:

z(x) =

N
∑

j=1

gj(x)θj = ξT θ (16)

where:

ξ = [ξ1, ξ2, · · · , ξN ]T = [g1(x), g2(x), · · · , gN (x)]T

and
θ = [θ1, θ2, · · · , θN ]T

Theorem 1[19]. Suppose h(x) is a continuous func-
tion on a compact set U , then for any ε > 0, there exists
a fuzzy logic system like (16), which satisfies:

sup
x∈U

|h(x) − z(x)| 6 ε (17)

Theorem 1 states that the FBF expansions of (13)
are universal approximators, and that the theorem is
called the fuzzy universal approximation (FUA) theo-
rem.

The following definitions are made for the rest of
the paper:

D1. A is a m × n matrix, aij is an element of A,
that is, A = {aij}m×n(i, j = 1, · · · , m, n).

D2. A and B are two m × n matrices, aij and bij

are elements of A and B, respectively, |A| < |B| means
|aij | < |bij |(i, j = 1, · · · , m, n).

D3. A is a n dimension vector and ai is an element
of A, sgn(A) is the sign of the vector, which means
sgn(A) = {|ai|}n.

D4. A and B are n dimension vectors respectively,
Pr oj(A, B) is the projection operation of A on B.

The lemmas L1 and L2 together with Barbalat’s
Lemma are introduced here:

L1. If A and B are two n dimension vectors, then
AT B = BT A.

Proof. As A and B are two n dimension vectors,
A = {ai}1×n and B = {bi}1×n,

AT B =

n
∑

i=1

aibi =

n
∑

i=1

biai = BT A

�

L2. If A and B are two m × n matrices, then
(AT B)T = BT A.

(The proof is similar to that of L1 and omitted).

Barbalat’s lemma[17]. If the differential function
f(t) has a finite limit as t → ∞, and if ḟ(t) is uniformly
continuous, then ḟ(t) → 0 as t → ∞.

3 Controller design

If the system function F (x) and the control gain
G(x) are known and there is no disturbance (d = 0),
it would be easy to calculate the control law from (9),
but in practical applications, F (x) and G(x) are usually
not known, and there is external disturbance (d 6= 0),
so we need to develop a procedure to design a control
law to force system outputs to track reference trajecto-
ries with a desired accuracy. In this section, two cases
are discussed separately for the designation of control
laws of systems in the form of (2) with the integration
of FLC, adaptive control, and SMC.

3.1 Case one

A4. In the control system in (2), the control gain
matrix is known and it is a unit matrix, that is:

G(x) = diag[1, · · · , 1] (18)
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As the system function F (x) is not known, in or-
der to design the control law in (9), the fuzzy system
F̂ (x|θf ) is used as an approximation, allowing the con-
trol law in (9) to be written in approximated form as:

u = −bR + F̂ (x|θf ) + d − y′ + H(S)c (19)

and

F̂ (x|θf ) = [f̂1(x|θf1
), · · · , f̂p(x|θfp

)]T = ξT
f (x)θf (20)

where:

ξf (x) = diagbξT
f1

(x), · · · , ξT
fp

(x)c

θf = [θT
f1

, · · · , θT
fp

]T ∈ Rn (n =

p
∑

i=1

ni)

that is:

f̂i(x|θfi
) = ξT

fi
(x)θfi

(i = 1, · · · , p) (21)

where ξfi
(x) = [ξfi,1(x), · · · , ξfi,ni

(x)]T ∈ Rni are

FBFs defined as ξfi,l(x) =

Ni
∏

j=1

µF l
j
(xj)

ni
∑

l=1

Ni
∏

j=1

µF l
j
(xj)

(l = 1, · · · ,

ni and Ni is the number of rules for fi approximation).
θfi

∈ Rni is an adjustable vector while the membership
functions µF i

j
(xj) for 1 6 l 6 ni and 1 6 j 6 Ni are

specified beforehand using the knowledge of experts.

Theorem 2. In the control system in (2), if as-
sumption A1, A2 and A4 are satisfied and the control
law vector is designed using (19) and (20), and the pa-
rameter vectors θf are adjusted by the following adap-
tation law:

Proj
(

ξf (x)S −
1

γf

θ̇f , ϕf

)

= 0 (22)

γf is the adaptation rate, a positive constant. Then
closed loop system signals will be bounded and the
tracking error vector defined in (2) will be convergent
to zero asymptotically.

Proof. If the control is designed by (19), taking it
into (7) gives:

Ṡ = R + F (x) + u + d − y′

= R + F (x) − [R + F̂ (x|θf ) − y′ + H(S)] + d − y′

= F (x) − F̂ (x|θf ) − H(S) + d (23)

Defining the following parameter vector:

θ∗f = arg min
θf∈Ωf

[

sup
x∈Rn

|F̂ (x|θf ) − F (x)|
]

where Ωf is the constraint set for θf and ω = F (x) −

F̂ (x|θ∗f ), then equation (23) can be rewritten as:

Ṡ = F (x) − F̂ (x|θ∗f ) + F̂ (x|θ∗f ) − F̂ (x|θf ) − H(S) + d

= ω + [F̂ (x|θ∗f ) − F̂ (x|θf )] − H(S) + d

= ω + ξT
f (x)(θ∗f − θf ) − H(S) + d

= ω + ξT
f (x)ϕf − H(S) + d (24)

where ϕf = (θ∗f − θf ).
If the Lyapunov function candidate to be considered

is as follows:

V =
1

2

(

ST S +
1

γf

ϕT
f ϕf

)

(25)

and the time derivative of (25) is:

V̇ = ST Ṡ +
1

γf

ϕT
f ϕ̇f

= ST (ω + ξT
f (x)ϕf − H(S) + d) +

1

γf

ϕT
f ϕ̇f

= ST (ω − H(S) + d) + (ST ξT
f (x)ϕf +

1

γf

ϕT
f ϕ̇f )

(26)

let:

ST ξT
f (x)ϕf +

1

γf

ϕT
f ϕ̇f = 0 (27)

and H(S) be designed as:

H(S) > dMax (28)

where:
dMax = [d1Max, · · · , dpMax]T

and diMaxs are the maximum of the absolute values of
external disturbances (i = 1, · · · , p), then equation (26)
can be written as:

V̇ 6 ST ω − {|S|T [H(S) − d]}

< ST ω − {|S|T [H(S) − dMax]} (29)

According to the fuzzy universal approximation
theorem, ω is expected to be as small as possible, so
the derivative of a Lyapunov candidate is less than zero,
that is:

V̇ < 0 (30)

Therefore, all signals in the system are bounded. Since
S(t) is uniformly bounded, if E(0) is bounded, then
E(t) is also bounded, and since yr is bounded by de-
sign, so x(t) ∈ L∞.

To complete the proof and establish asymptotic
convergence of the tracking error, that is, E(t) → 0
as t → ∞, it is necessary to show that S(t) → 0 as
t → ∞. Applying Barbalat’s lemma to:

V1 =V (t) −

∫ t

0

(V̇ (τ) − ST (τ)ω+



F. Qiao et al./International Journal of Automation and Computing 1 (2004) 51-62 57

ST (τ)(H(S) − dMax))dτ (31)

with : V1 = ST ω − {|S(τ)|T (H(S) − dMax)}

it can be easily shown that every term in (25) is
bounded, hence S(t) is bounded, which implies that
V̇1 is a uniformly continuous function of time. Since V1

is bounded below by 0, and V̇1(t) 6 0 for all t > 0, from
Babarlat’s lemma, it can be concluded that E(t) → 0
as t → ∞.

According to L1, ϕT
f ϕ̇ = ϕ̇T

f ϕ, and as ϕ̇f = −θ̇f ,
then equation (27) can be rewritten as:

Proj
(

ξf (x)S −
1

γf

θ̇f , ϕf

)

= 0 (32)

3.2 Case two

In the general form of a MIMO non-linear system
in (2), it is assumed that assumptions A1–A3 are sat-
isfied. In order to design the control law in (9) the
fuzzy system F̂ (x|θf ) is used to approximate the sys-

tem function F (x), and the fuzzy system Ĝ(x|θG) to
approximate G(x), the control law in (9) can therefore
be written in approximated form as:

u = −[Ĝ(x|θG)]−1[R + F̂ (x|θf ) + d− y′ + H(S)] (33)

and:

F̂ (x|θf ) = [F̂1(x|θf1
), · · · , f̂p(x|θfp

)]T

= ξT
f (x)θf (34)

where:

ξf (x) = diagbξT
f1

(x), · · · , ξT
fp

(x)c

θf = [θT
f1

, · · · , θT
fp

]T ∈ Rn (n =

p
∑

i=1

ni)

that is, f̂i(x|θfi
) = ξT

fi
(x)θfi

(i = 1, · · · , p) where

ξfi
(x) = [ξfi,1(x), · · · , ξfi,ni

(x)]T ∈ Rni are FBFs de-

fined as ξfi,l(x) =

Ni
∏

j=1

µF l
j
(xj)

ni
∑

l=1

Ni
∏

j=1

µF l
j
(xj)

(l = 1, · · · , ni, Ni is

the number of the rules for fi approximation), θfi
∈

Rni is an adjustable vector, the membership functions
µF i

j
(xj) for 1 6 l 6 mfi

and 1 6 j 6 ki are specified

beforehand using the knowledge of experts.

Also:

Ĝ(x|θG) = [Ĝ1(x|θG), · · · , Ĝp(x|θG)]T

= ξT
G(x)θG (35)

where:

ξG(x) = diagbξT
G1

(x), · · · , ξT
Gp

(x)c

θG = [θT
G1

, · · · , θT
Gp

]T ∈ Rn (n =

p
∑

j=1

ni)

that is:

Ĝi(x|θG) = ξT
Gi

(x)θGi
(i = 1, · · · , p) (36)

where ξGi
(x) = [ξGi,1(x), · · · , ξGi,ni

(x)]T ∈ Rni are

FBFs defined as ξGi,l(x) =

Ng
∏

j=1

µGl
j
(xj)

ni
∑

l=1

Ng
∏

j=1

µGl
j
(xj)

(l =

1, · · · , ni, Ng is the number of fuzzy rules) and θGi
∈

Rni×ni is an adjustable matrix and the membership
functions µGi

j
(xj) for 1 6 l 6 mGi

and 1 6 j 6 Ng are

specified beforehand using the knowledge of experts.
Theorem 3. For the control system in (2), if the

assumption A1–A3 are satisfied and the control law
vector is designed using (33), (34) and (35), and pa-
rameter vectors θf and θG are adjusted by the following
adaptation laws:

Rroj
(

ξf (x)S −
1

γf

θ̇f , ϕf

)

= 0 (37)

and:

Proj
(

ξG(x)S −
1

γG

˙θG, ϕG

)

= 0 (38)

γf and γG are the adaptation rates respectively, posi-
tive constants. Then closed loop system signals will be
bounded and the tracking error vector defined in (2)
will be convergent to zero asymptotically.

Proof. The following equation can be obtained
from (7) as:

Ṡ = R + F (x) + G(x)u + d − y′

= F (x) − F̂ (x|θ∗f ) + [F̂ (x|θ∗f ) − F̂ (x|θf )]

+ {[G(x) − Ĝ(x|θ∗G)] + [Ĝ(x|θ∗G) − Ĝ(x|θG)]}u

− H(S) − y′

= F (x) − F̂ (x|θ∗f ) + [G(x) − Ĝ(x|θ∗G)]

+ F̂ (x|θ∗f ) − F̂ (x|θf )] + [Ĝ(x|θ∗G) − Ĝ(x|θG)]u

− H(S) − y′ (39)

By defining the following parameter vectors:

θ∗f = arg min
θf∈Ωf

[

sup
x∈Rn

|F̂ (x|θf ) − F (x)|
]

θ∗G = arg min
θG∈ΩG

[

sup
x∈Rn

|Ĝ(x|θG) − G(x)|
]
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where Ωf and ΩG are constraint sets for θf and θG, re-

spectively, and ω = F (x)−F̂ (x|θ∗f )+(G(x)−Ĝ(x|θ∗G))u.
Equation (39) can be rewritten as:

Ṡ = F (x) − F̂ (x|θ∗f ) + F̂ (x|θ∗f ) − F̂ (x|θf ) + [G(x)

− Ĝ(x|θ∗G)]u + [Ĝ(x|θ∗G) − Ĝ(x|θG)]u − H(S) + d

= ω + [F̂ (x|θ∗f ) − F̂ (x|θf )] − [Ĝ(x|θ∗G) − Ĝ(x|θG)]u

− y′ − H(S) + d

= ω + ξT
f (x)(θ∗f − θf ) + ξT

G(x)(θ∗G − θG)u − H(S) + d

= ω + ξT
f (x)ϕf + ξT

G(x)ϕGu − H(S) + d (40)

where ϕf = (θ∗f − θf ) and ϕG = (θ∗G − θG).
The Lyapunov function candidate to be considered

is as follows:

V =
1

2

(

ST S +
1

γf

ϕT
f ϕf +

1

γG

ϕT
GϕG

)

(41)

The time derivative of (41) is therefore:

V̇ = ST Ṡ +
1

γf

ϕT
f ϕ̇f +

1

γG

ϕT
Gϕ̇G

= ST (ω + ξT
f (x)ϕf + ξT

G(x)ϕGu − H(S) + d)

+
1

γf

ϕT
f ϕ̇f +

1

γG

ϕT
Gϕ̇G

= ST (ω − H(S) + d) +
(

ST ξT
f (x)ϕf +

1

γf

ϕT
f ϕ̇f

)

+
(

ST ξT
G(x)ϕGu +

1

γG

ϕT
Gϕ̇G

)

(42)

Let

ST ξT
f (x)ϕf +

1

γf

ϕT
f ϕ̇f = 0 (43)

and

ST ξT
G(x)ϕGu +

1

γG

ϕT
Gϕ̇G = 0 (44)

and H(S) is designed as in Case One, then equation
(42) can be written as:

V̇ 6 ST ω − {|S|T [H(S) − d]}

< ST ω − {|S|T [H(S) − dMax]}

The completion of the proof is similar to that of the
proof for Theorem 1.

From (43) and (44), equations (37) and (38) can be
obtained.

3.3 Design procedure

From the discussion above, a general controller de-
sign procedure can be summarised as follows:

1) Specify the sliding function vector S =
[s1, · · · , sp]

T in (3) and identify the tracking error in
(4);

2) Select the Hurwitzian coefficient vectors Ci to
guarantee that all roots of the sliding function vector
S = [s1, · · · , sp]

T in (3) are on the left side of the plane,
3) Design the membership functions of the fuzzy

sets for variables x1, · · · , xp with µj
i (xi)(i = 1, · · · , p)

and j = 1, · · · , mi, where mi is the number of fuzzy
sets for variable xi;

4) Construct the fuzzy rule base for approximating
F (x) and G(x),

5) Specify the adaptive rates rf and rG;

6) Calculate the approximate F̂ (x|θf ) and Ĝ(x|θG)
in (34) and (35);

7) Adjust the parameter vectors θf and θG with the
adaptation laws (37) and (38), respectively.

In the next section, two examples are studied to
verify the effectiveness of the proposed fuzzy adaptive
sliding mode control strategy.

4 Simulation studies

In this section two examples are studied for the dif-
ferent cases discussed in Section 3.

4.1 Example 1

Consider the following simple non-linear MIMO
system[29]:

ẋ1 = x2 + u1 (45)

ẋ2 = x1 + (2e−(x2

1
+x2

2
) − 0.1)x2 + u2

The systems outputs are:

y1 = x1, y2 = x2

The system is unstable if it is free of control.
The system dynamics can be written in a matrix

as:

ẋ = Ax + B[F (x) + G(x)u + d] (46)

y = Cx

where:

x = [x1 x2]
T ∈ R2 is the system state vector.

A =

[

0 0
0 0

]

, B =

[

1 0
0 1

]

, C =

[

1 0
0 1

]

F (x) =

[

x2

x1 + (2e−(x2

1
+x2

2
) − 0.1)x2

]

G(x) =

[

1 0
0 1

]

, d =

[

d1

d2

]

(is an external

disturbance vector)

It is assumed that assumption A1 is satisfied, that
the system function vector F (x) is not exactly known,
but it is bounded and smooth, meeting the requirement
of A2, and that the system control gain matrix G(x)
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satisfies assumption A4. The objective is to design the
control law vector u = [u1 u2]

T to force the state vec-
tor of the system to track the reference trajectory vec-

tor yr = [yr1 yr2]
T where yr1 =

{

0.5, 0 < t 6 0.5

−0.5 0.5 < t 6 1
and yr2 = 0.5 sin(2πt) with the function vector F (x)
unknown.

The sliding function vector is designed as:

S = [s1 s2]
T (47)

where s1 = e1 = x1 − yr1 and s2 = e2 = x2 − yr2.
Because the system function vector is not known

exactly, an FUA theorem is applied to approximate it.
The membership functions of the fuzzy sets for vari-

ables x1 and x2 in (x1, x2) ∈ ([−1.5, 1.5] × [−1.5, 1.5])
are selected as:

µ1
i (xi) =

1

1 + exp(4 × (xi + 0.5))
for Negative Big (NB)

µ2
i (xi) = exp(−(xi + 0.6)2) for Negative Small (NS)

µ3
i (xi) = exp(−(xi)

2) for ZEro (ZE)

µ4
i (xi) = exp(−(xi − 0.6)2) for Positive Small (PS)

µ5
i (xi) =

1

1 + exp(−4 × (xi − 0.5))
for Positive Big (PB)

(48)

where i = 1, 2.
The membership functions are shown in Fig.2.

solid: NB, dotted: NS, dash dotted: ZE, dashed: PS, solid: PB

Fig.2 Membership functions for the state variables

x1 and x2

The fuzzy rules are constructed as follows:

Rl : IF x1 is Al
1 and x2 is Al

2

THEN F̂ l is Bl (l = 1, · · · , 25) (49)

where Al
i(i = 1, 2) and Bl are linguistic terms char-

acterised by the related fuzzy membership functions
defined in (10).

In order to simplify computation, f1(x) is assumed
to be dominated only by x2. This allows the system

function vector to be approximated as:

F̂ (x|θf ) = [f̂1(x|θf1 f̂2(x|θf2)]
T (50)

and:

f̂1(x|θf1) = ξT
f1θf1 (51)

f̂2(x|θf2) = ξT
f2θf2

where ξf1 = [ξf11, · · · ξf1i, · · · , ξf15]
T with ξf1i = µi

2

(xi)/Df1 and Df1 =
5

∑

i=1

µi
2(xi), and ξf2 = [ξf211, · · ·

ξf2ij , · · · , ξf255]
T with ξf2ij = µi

1(xi)µ
j
2(xj)/Df2

and

Df2 =

5
∑

i,j=1

µi
1(xi)µ

j
2(xj).

H(S) is designed as H(S) = diag[0 0]sign

[

s1

s2

]

+

diag[20 20]

[

s1

s2

]

.

The system’s initial condition is set as x(0) =
[0 0]T , θf2(0) randomly selected within [−1 1], sam-
pling rate set to 4T = 0.01 of a second, simulation
period T selected as 2 seconds, and the adaptive rate
specified as rf2 = 40.

Simulation results for the system are shown in Fig.3.

Fig.3 Simulation results for example 1

4.2 Example 2

The second example of a MIMO non-linear system
to be considered is as:

ẋ1 = x3 + x3x2 + u1 + d1

ẋ2 = x3

ẋ3 = x2
1 + x1x3 + x2

3 + (e−(x2

1
+x2

2
+x2

3
)

+ sin(2πx3))u1 + 2u2 + d3 (52)

where system outputs are:

y1 = x1, y2 = x2
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The differential equations of the system in (52) can
be rewritten in matrix form as:

ẋ = A + B[F (x) + G(x)u + d]

y = CT x (53)

where x = [x1, x2, x3]
T ∈ R3 is the system state vector:

A = diag[A1, A2]

B = diag[B1, B2]

C = diag[C1, C2]

A1 = 0, A2 =

[

0 1
0 0

]

, B1 = 1, B2 =

[

0
1

]

C1 = 1, C2 = [1 0]

F (x) =

[

f1(x)
f2(x)

]

=

[

x3 + x3x2

x2
1 + x1x3 + x2

3

]

G(x) =

[

g11 g12

g21 g22

]

=

[

1 0
e−(x2

1
+x2

2
+x2

3
) + sin(2πx3) 2

]

d =

[

d1

d3

]

and the complete matrix form expression of (52) can
be described as:





ẋ1

ẋ2

ẋ3



 =





0 0 0
0 0 1
0 0 0









x1

x2

x3





+





1 0
0 0
0 1





{[

x3 + x3x2

x2
1 + x1x3 + x2

3

]

+

[

1 0
e−(x2

1
+x2

2
+x2

3
) + sin(2πx3) 2

][

u1

u2

]

+

[

d1

d3

]}

(54)

[

y1

y2

]

=

[

1 0 0
0 1 0

]





x1

x2

x3





It is assumed that the system state vector x =
[x1, x2, x3]

T is measurable, that means, the system
meets assumption A1, and the system function vec-
tor F (x) = [f1(x), f2(x)]T is not known exactly, but
it is bounded and smooth; the control gain matrix

G(x) =

[

g11 g12

g21 g22

]

is partly known and is nonsin-

gular (g11 = 1, g12 = 0, g22 = 2 and g21 is known).
The objective of the system design is to determine
the output of the fuzzy logic controller u = [u1 u2]

T

based on an adaptive law to track the desired trajec-
tory yr = [yr1 yr2]

T = [0.2 sin π
2 t 0.2 cos π

2 t]T where
all signals involved are uniformly bounded and tracking
error converges to zero.

In this case, the system satisfies assumptions A1–
A3. In order to reduce computational burden, it is as-
sumed that f1(x) is known to be only associated with
x2 and x3, f2(x) only associated with x1 and x3, and
g21 related to x1, x2 and x3. The FUA theorem will be
applied to approximate unknown functions.

The sliding function vector can be described as:

S = [s1 s2]
T (55)

where s1 = e1 = x1−yr1 and s2 = e2 = k21(x2−yr2)+
x3 − yr3, (yr3 = ẏr2 = −0.1π sin π

2 t).
Five fuzzy sets are designed for each of the crisp

variables x1, x2 and x3 in (x1, x2, x3) ∈ ([−1.5, 1.5] ×
[−1.5, 1.5]× [−1.5, 1.5]), and the membership functions
of the fuzzy sets are selected as in Case One.

As f1(x) is only associated with x2 and x3, and
f2(x) is only associated with x1 and x3, the following
rules can be drawn to approximate f̂1(x) and f̂2(x):

Ri : If x2 is Ai
2 and x3 is Ai

3 then f̂ i
1 isBi

1, i = 1,

· · · , 25

Rj : If x1 is Aj
1 and x3 is Aj

3 then f̂ j
2 isBj

2, j = 1,

· · · , 25

Rk : If x1 is Ak
1 and x2 is Ak

2 and x3 is Ak
3 then

ĝk
21 is Bk

21, k = 1, · · · , 125 (56)

where A and B are linguistic terms characterised by
related fuzzy membership functions, and f1(x) is ap-
proximated by:

f̂1(x|θf1) = ξT
f1θf1 (57)

where ξf1 = [ξ11
f1(x), · · · , ξ55

f1(x)] and

ξij
f1(x) =

µi
2(x2)µ

j
3(x3)

5
∑

i,j=1

µi
2(x2)µ

j
3(x3)

, i, j = 1, · · · , 5

and f2(x) is approximated by:

f̂2(x|θf2) = ξT
f2θf2 (58)

where ξf2 = [ξ11
f2(x), · · · , ξ55

f2(x)] and

ξij
f2(x) =

µi
1(x1)µ

j
3(x3)

5
∑

i,j=1

µi
1(x1)µ

j
3(x3)

, i, j = 1, · · · , 5

and g21(x) is approximated by:

ĝ21(x|θg21) = ξT
g21θg21 (59)

where ξg21 = [ξ111
g21(x), · · · , ξ555

g21(x)]T and

ξijk
g21(x) =

µi
1(x1)µ

j
2(x2)µ

k
3(x3)

5
∑

i,j=1

µi
1(x1)µ

j
2(x2)µ

k
3(x3)

, i, j, k =

1, · · · , 5
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According to the adaptive laws (37) and (38), adap-
tive rates are selected as γf1 = 10, γf2 = 10 and
γg21 = 10, and the parameters θf1, θf2 and θg21 are
adjusted by:

θ̇f1 = γf1s1ξf1

θ̇f2 = γf2s2ξf2

θ̇g21 = γg21s2ξg21u1 (60)

and H(S) is designed as H(S) = diag[0 0]sign

[

s1

s2

]

+

diag[20 8]

[

s1

s2

]

.

The initial conditions of the system are set as
x(0) = [0.1 0 − 0.1]T , θf1(0), θf2(0) and θg21(0)
are randomly selected within [−1 1], sampling rate is
set to 4T = 0.01 of a second, and the simulation pe-
riod is selected as 4 seconds. The simulation results are
shown in Fig.4.

Fig.4 The simulation results for example 2

From the simulation results shown in Figs.3 and 4,
we can see that the proposed SMC scheme based on
fuzzy adaptive law is very effective for tracking con-
trol of MIMO nonlinear systems with uncertainty. The
proposed control algorithm overcomes the chatter dis-
advantage of a pure SMC.

5 Conclusions

A SMC algorithm based on indirect fuzzy adap-
tive law is proposed for the tracking control problem

of the general form of MIMO nonlinear systems with
uncertainty. The proposed algorithm takes advantage
of SMC, FLC and adaptive control with a reaching law
method and fuzzy universal approximation, and does
not need to know much about the structure and bounds
of the parameters of systems as in the design of con-
ventional SMCs. The stability of the control system is
proved in terms of a Lyapunov second stability theo-
rem. Simulation studies in this paper show the effec-
tiveness of the proposed hybrid control algorithm.
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