Citation: | Wei Wu, Hanyang Peng, Shiqi Yu. YuNet: A Tiny Millisecond-level Face Detector. Machine Intelligence Research, vol. 20, no. 5, pp.656-665, 2023. https://doi.org/10.1007/s11633-023-1423-y |
[1] |
P. Viola, M. Jones. Rapid object detection using a boosted cascade of simple features. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, USA, pp. 511–518, 2001. DOI: 10.1109/CVPR.2001.990517.
|
[2] |
Y. T. Feng, S. Q. Yu, H. Y. Peng, Y. R. Li, J. G. Zhang. Detect faces efficiently: A survey and evaluations. IEEE Transactions on Biometrics,Behavior,and Identity Science, vol. 4, no. 1, pp. 1–18, 2021. DOI: 10.1109/tbiom.2021.3120412.
|
[3] |
S. Yang, P. Luo, C. C. Loy, X. O. Tang. WIDER FACE: A face detection benchmark. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 5525–5533, 2016. DOI: 10.1109/cvpr.2016.596.
|
[4] |
P. Y. Hu, D. Ramanan. Finding tiny faces. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, pp. 1522–1530, 2017. DOI: 10.1109/cvpr.2017.166.
|
[5] |
S. F. Zhang, X. Y. Zhu, Z. Lei, H. L. Shi, X. B. Wang, S. Z. Li. S.3FD: Single shot scale-invariant face detector. In Proceedings of IEEE International Conference on Computer Vision, Venice, Italy, pp. 192–201, 2017. DOI: 10.1109/iccv.2017.30.
|
[6] |
C. Chi, S. F. Zhang, J. L. Xing, Z. Lei, S. Z. Li, X. D. Zou. Selective refinement network for high performance face detection. In Proceedings of AAAI Conference on Artificial Intelligence, vol. 33, no. 1, pp. 8231–8238, 2019. DOI: 10.1609/aaai.v33i01.33018231.
|
[7] |
J. Li, Y. B. Wang, C. A. Wang, Y. Tai, J. J. Qian, J. Yang, C. J. Wang, J. L. Li, F. Y. Huang. DSFD: Dual shot face detector. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Long Beach, USA, pp. 5055–5064, 2019. DOI: 10.1109/cvpr.2019.00520.
|
[8] |
W. Liu, S. C. Liao, W. Q. Ren, W. D. Hu, Y. N. Yu. High-level semantic feature detection: A new perspective for pedestrian detection. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Long Beach, USA, pp. 5187–5196, 2019. DOI: 10.1109/cvpr.2019.00533.
|
[9] |
J. K. Deng, J. Guo, E. Ververas, I. Kotsia, S. Zafeiriou. RetinaFace: Single-shot multi-level face localisation in the wild. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, USA, pp. 5202–5211, 2020. DOI: 10.1109/cvpr42600.2020.00525.
|
[10] |
Y. Liu, F. Wang, J. K. Deng, Z. P. Zhou, B. Sun, H. Li. MogFace: Towards a deeper appreciation on face detection. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, New Orleans, USA, pp. 4083–4092, 2022. DOI: 10.1109/CVPR52688.2022.00406.
|
[11] |
L. Song, J. F. Yang, Q. Z. Shang, M. A. Li. Dense face network: A dense face detector based on global context and visual attention mechanism. Machine Intelligence Research, vol. 19, no. 3, pp. 247–256, 2022. DOI: 10.1007/s11633-022-1327-2.
|
[12] |
K. Simonyan, A. Zisserman. Very deep convolutional networks for large-scale image recognition, [Online], Available: https://arxiv.org/abs/1409.1556, 2014.
|
[13] |
K. M. He, X. Y. Zhang, S. Q. Ren, J. Sun. Deep residual learning for image recognition. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 770–778, 2016. DOI: 10.1109/cvpr.2016.90.
|
[14] |
A. G. Howard, M. L. Zhu, B. Chen, D. Kalenichenko, W. J. Wang, T. Weyand, M. Andreetto, H. Adam. MobileNets: Efficient convolutional neural networks for mobile vision applications, [Online], Available: https://arxiv.org/abs/1704.04861, 2017.
|
[15] |
A. Krizhevsky, I. Sutskever, G. E. Hinton. ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, pp. 1097–1105, 2012.
|
[16] |
M. Najibi, P. Samangouei, R. Chellappa, L. S. Davis. SSH: Single stage headless face detector. In Proceedings of International Conference on Computer Vision, Venice, Italy, pp. 4885–4894, 2017. DOI: 10.1109/iccv.2017.522.
|
[17] |
J. Li, B. Zhang, Y. B. Wang, Y. Tai, Z. Y. Zhang, C. J. Wang, J. L. Li, X. M. Huang, Y. L. Xia. ASFD: Automatic and scalable face detector. In Proceedings of the 29th ACM International Conference on Multimedia, pp. 2139–2147, 2021. DOI: 10.1145/3474085.3475372.
|
[18] |
Y. Liu, X. Tang. BFBox: Searching face-appropriate backbone and feature pyramid network for face detector. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, USA, pp. 13565–13574, 2020. DOI: 10.1109/cvpr42600.2020.01358.
|
[19] |
X. Tang, D. K. Du, Z. Q. He, J. T. Liu. PyramidBox: A context-assisted single shot face detector. In Proceedings of the 15th European Conference on Computer Vision, Springer, Munich, Germany, pp. 812–828, 2018. DOI: 10.1007/978-3-030-01240-3_49.
|
[20] |
Y. Liu, X. Tang, J. Y. Han, J. T. Liu, D. E. Rui, X. Wu. HAMBox: Delving into mining high-quality anchors on face detection. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, USA, pp. 13043–13051, 2020. DOI: 10.1109/cvpr42600.2020.01306.
|
[21] |
D. L. Qi, W. J. Tan, Q. Yao, J. F. Liu. YOLO5Face: Why reinventing a face detector. In Proceedings of Computer Vision – ECCV Workshops, Springer, Tel Aviv, Israel, vol. 13805, pp. 288–244, 2022. DOI: 10.1007/978-3-031-25072-9_15.
|
[22] |
G. Jocher. YOLOv5, 2020, [Online], Available: https://github.com/ultralytics/yolov5, Mar. 2022.
|
[23] |
J. Guo, J. K. Deng, A. Lattas, S. Zafeiriou. Sample and computation redistribution for efficient face detection. In Proceedings of the 10th International Conference on Learning Representations, 2022.
|
[24] |
S. H. Gao, Y. Q. Tan, M. M. Cheng, C. Z. Lu, Y. P. Chen, S. C. Yan. Highly efficient salient object detection with 100K parameters. In Proceedings of the 16th European Conference on Computer Vision, Springer, Glasgow, UK, 2020, pp. 702–721. DOI: 10.1007/978-3-030-58539-6_42.
|
[25] |
T. Y. Lin, P. Dollár, R. Girshick, K. M. He, B. Hariharan, S. Belongie. Feature pyramid networks for object detection. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, pp. 936–944, 2017. DOI: 10.1109/cvpr.2017.106.
|
[26] |
Z. Ge, S. T. Liu, F. Wang, Z. M. Li, J. Sun. YOLOX: Exceeding YOLO series in 2021, [Online], Available: https://arxiv.org/abs/2107.08430, 2021.
|
[27] |
Z. Ge, S. T. Liu, Z. M. Li, O. Yoshie, J. Sun. OTA: Optimal transport assignment for object detection. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Nashville, USA, pp. 303–312, 2021. DOI: 10.1109/CVPR46437.2021.00037.
|
[28] |
H. Y. Peng, S. Q. Yu. A systematic IoU-related method: Beyond simplified regression for better localization. IEEE Transactions on Image Processing, vol. 30, pp. 5032–5044, 2021. DOI: 10.1109/TIP.2021.3077144.
|
[29] |
K. Chen, J. Q. Wang, J. M. Pang, Y. H. Cao, Y. Xiong, X. X. Li, S. Y. Sun, W. S. Feng, Z. W. Liu, J. R. Xu, Z. Zhang, D. Z. Cheng, C. C. Zhu, T. H. Cheng, Q. J. Zhao, B. Y. Li, X. Lu, R. Zhu, Y. Wu, J. F. Dai, J. D. Wang, J. P. Shi, W. L. Ouyang, C. C. Loy, D. H. Lin. MMDetection: Open MMLab detection toolbox and benchmark, [Online], Available: https://arxiv.org/abs/1906.07155, 2019.
|
[30] |
V. Bazarevsky, Y. Kartynnik, A. Vakunov, K. Raveendran, M. Grundmann. BlazeFace: Sub-millisecond neural face detection on mobile GPUs, [Online], Available: https://arxiv.org/abs/1907.05047, 2019.
|
[31] |
S. F. Zhang, X. Y. Zhu, Z. Lei, H. L. Shi, X. B. Wang, S. Z. Li. FaceBoxes: A CPU real-time face detector with high accuracy. In Proceedings of IEEE International Joint Conference on Biometrics, Denver, USA, 2017. DOI: 10.1109/BTAS.2017.8272675.
|