Wei Wu, Hanyang Peng, Shiqi Yu. YuNet: A Tiny Millisecond-level Face Detector. Machine Intelligence Research, vol. 20, no. 5, pp.656-665, 2023. https://doi.org/10.1007/s11633-023-1423-y
Citation: Wei Wu, Hanyang Peng, Shiqi Yu. YuNet: A Tiny Millisecond-level Face Detector. Machine Intelligence Research, vol. 20, no. 5, pp.656-665, 2023. https://doi.org/10.1007/s11633-023-1423-y

YuNet: A Tiny Millisecond-level Face Detector

doi: 10.1007/s11633-023-1423-y
More Information
  • Author Bio:

    Wei Wu received the B. Sc. degree in computer science and technology from Chongqing University, China in 2017. Currently, he is a master student in electronics science and technology at Department of Computer Science and Engineering, Southern University of Science and Technology, China. His research interests include object detection and computer vision.E-mail: 12032501@mail.sustech.edu.cn ORCID iD: 0000-0002-9595-1778

    Hanyang Peng received the B. Sc. degree in measurement and control technology from Northeast University of China, China in 2008, the M. Eng. degree in detection technology and automatic equipment from Tianjin University, China in 2010, and the Ph. D. degree in pattern recognition and intelligence systems from Institute of Automation, Chinese Academy of Sciences, China in 2017. He currently works as an assistant professor in Pengcheng Laboratory, China.His research interests include computer vision, machine learning and distributed learning.E-mail: penghy@pcl.ac.cnORCID iD: 0000-0002-9715-473X

    Shiqi Yu received the B. Eng. degree in computer science and engineering from Chu Kochen Honors College, Zhejiang University, China in 2002, and the Ph. D. degree in pattern recognition and the intelligent systems from Institute of Automation, Chinese Academy of Sciences, China in 2007. He is currently an associate professor in Department of Computer Science and Engineering, Southern University of Science and Technology, China. He worked as an assistant professor and an associate professor in Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, China from 2007 to 2010, and as an associate professor in Shenzhen University, China from 2010 to 2019.His research interests include gait recognition, face detection and computer vision. E-mail: yusq@sustech.edu.cn (Corresponding author) ORCID iD: 0000-0002-5213-5877

  • Received Date: 2022-09-02
  • Accepted Date: 2023-02-06
  • Publish Online: 2023-04-19
  • Publish Date: 2023-10-01
  • Great progress has been made toward accurate face detection in recent years. However, the heavy model and expensive computation costs make it difficult to deploy many detectors on mobile and embedded devices where model size and latency are highly constrained. In this paper, we present a millisecond-level anchor-free face detector, YuNet, which is specifically designed for edge devices. There are several key contributions in improving the efficiency-accuracy trade-off. First, we analyse the influential state-of-the-art face detectors in recent years and summarize the rules to reduce the size of models. Then, a lightweight face detector, YuNet, is introduced. Our detector contains a tiny and efficient feature extraction backbone and a simplified pyramid feature fusion neck. To the best of our knowledge, YuNet has the best trade-off between accuracy and speed. It has only 75 856 parameters and is less than 1/5 of other small-size detectors. In addition, a training strategy is presented for the tiny face detector, and it can effectively train models with the same distribution of the training set. The proposed YuNet achieves 81.1% mAP (single-scale) on the WIDER FACE validation hard track with a high inference efficiency (Intel i7-12700K: 1.6 ms per frame at 320×320). Because of its unique advantages, the repository for YuNet and its predecessors has been popular at GitHub and gained more than 11 K stars at https://github.com/ShiqiYu/libfacedetection.

     

  • loading
  • [1]
    P. Viola, M. Jones. Rapid object detection using a boosted cascade of simple features. In Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Kauai, USA, pp. 511–518, 2001. DOI: 10.1109/CVPR.2001.990517.
    [2]
    Y. T. Feng, S. Q. Yu, H. Y. Peng, Y. R. Li, J. G. Zhang. Detect faces efficiently: A survey and evaluations. IEEE Transactions on Biometrics,Behavior,and Identity Science, vol. 4, no. 1, pp. 1–18, 2021. DOI: 10.1109/tbiom.2021.3120412.
    [3]
    S. Yang, P. Luo, C. C. Loy, X. O. Tang. WIDER FACE: A face detection benchmark. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 5525–5533, 2016. DOI: 10.1109/cvpr.2016.596.
    [4]
    P. Y. Hu, D. Ramanan. Finding tiny faces. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, pp. 1522–1530, 2017. DOI: 10.1109/cvpr.2017.166.
    [5]
    S. F. Zhang, X. Y. Zhu, Z. Lei, H. L. Shi, X. B. Wang, S. Z. Li. S.3FD: Single shot scale-invariant face detector. In Proceedings of IEEE International Conference on Computer Vision, Venice, Italy, pp. 192–201, 2017. DOI: 10.1109/iccv.2017.30.
    [6]
    C. Chi, S. F. Zhang, J. L. Xing, Z. Lei, S. Z. Li, X. D. Zou. Selective refinement network for high performance face detection. In Proceedings of AAAI Conference on Artificial Intelligence, vol. 33, no. 1, pp. 8231–8238, 2019. DOI: 10.1609/aaai.v33i01.33018231.
    [7]
    J. Li, Y. B. Wang, C. A. Wang, Y. Tai, J. J. Qian, J. Yang, C. J. Wang, J. L. Li, F. Y. Huang. DSFD: Dual shot face detector. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Long Beach, USA, pp. 5055–5064, 2019. DOI: 10.1109/cvpr.2019.00520.
    [8]
    W. Liu, S. C. Liao, W. Q. Ren, W. D. Hu, Y. N. Yu. High-level semantic feature detection: A new perspective for pedestrian detection. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Long Beach, USA, pp. 5187–5196, 2019. DOI: 10.1109/cvpr.2019.00533.
    [9]
    J. K. Deng, J. Guo, E. Ververas, I. Kotsia, S. Zafeiriou. RetinaFace: Single-shot multi-level face localisation in the wild. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, USA, pp. 5202–5211, 2020. DOI: 10.1109/cvpr42600.2020.00525.
    [10]
    Y. Liu, F. Wang, J. K. Deng, Z. P. Zhou, B. Sun, H. Li. MogFace: Towards a deeper appreciation on face detection. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, New Orleans, USA, pp. 4083–4092, 2022. DOI: 10.1109/CVPR52688.2022.00406.
    [11]
    L. Song, J. F. Yang, Q. Z. Shang, M. A. Li. Dense face network: A dense face detector based on global context and visual attention mechanism. Machine Intelligence Research, vol. 19, no. 3, pp. 247–256, 2022. DOI: 10.1007/s11633-022-1327-2.
    [12]
    K. Simonyan, A. Zisserman. Very deep convolutional networks for large-scale image recognition, [Online], Available: https://arxiv.org/abs/1409.1556, 2014.
    [13]
    K. M. He, X. Y. Zhang, S. Q. Ren, J. Sun. Deep residual learning for image recognition. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 770–778, 2016. DOI: 10.1109/cvpr.2016.90.
    [14]
    A. G. Howard, M. L. Zhu, B. Chen, D. Kalenichenko, W. J. Wang, T. Weyand, M. Andreetto, H. Adam. MobileNets: Efficient convolutional neural networks for mobile vision applications, [Online], Available: https://arxiv.org/abs/1704.04861, 2017.
    [15]
    A. Krizhevsky, I. Sutskever, G. E. Hinton. ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, USA, pp. 1097–1105, 2012.
    [16]
    M. Najibi, P. Samangouei, R. Chellappa, L. S. Davis. SSH: Single stage headless face detector. In Proceedings of International Conference on Computer Vision, Venice, Italy, pp. 4885–4894, 2017. DOI: 10.1109/iccv.2017.522.
    [17]
    J. Li, B. Zhang, Y. B. Wang, Y. Tai, Z. Y. Zhang, C. J. Wang, J. L. Li, X. M. Huang, Y. L. Xia. ASFD: Automatic and scalable face detector. In Proceedings of the 29th ACM International Conference on Multimedia, pp. 2139–2147, 2021. DOI: 10.1145/3474085.3475372.
    [18]
    Y. Liu, X. Tang. BFBox: Searching face-appropriate backbone and feature pyramid network for face detector. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, USA, pp. 13565–13574, 2020. DOI: 10.1109/cvpr42600.2020.01358.
    [19]
    X. Tang, D. K. Du, Z. Q. He, J. T. Liu. PyramidBox: A context-assisted single shot face detector. In Proceedings of the 15th European Conference on Computer Vision, Springer, Munich, Germany, pp. 812–828, 2018. DOI: 10.1007/978-3-030-01240-3_49.
    [20]
    Y. Liu, X. Tang, J. Y. Han, J. T. Liu, D. E. Rui, X. Wu. HAMBox: Delving into mining high-quality anchors on face detection. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, USA, pp. 13043–13051, 2020. DOI: 10.1109/cvpr42600.2020.01306.
    [21]
    D. L. Qi, W. J. Tan, Q. Yao, J. F. Liu. YOLO5Face: Why reinventing a face detector. In Proceedings of Computer Vision – ECCV Workshops, Springer, Tel Aviv, Israel, vol. 13805, pp. 288–244, 2022. DOI: 10.1007/978-3-031-25072-9_15.
    [22]
    G. Jocher. YOLOv5, 2020, [Online], Available: https://github.com/ultralytics/yolov5, Mar. 2022.
    [23]
    J. Guo, J. K. Deng, A. Lattas, S. Zafeiriou. Sample and computation redistribution for efficient face detection. In Proceedings of the 10th International Conference on Learning Representations, 2022.
    [24]
    S. H. Gao, Y. Q. Tan, M. M. Cheng, C. Z. Lu, Y. P. Chen, S. C. Yan. Highly efficient salient object detection with 100K parameters. In Proceedings of the 16th European Conference on Computer Vision, Springer, Glasgow, UK, 2020, pp. 702–721. DOI: 10.1007/978-3-030-58539-6_42.
    [25]
    T. Y. Lin, P. Dollár, R. Girshick, K. M. He, B. Hariharan, S. Belongie. Feature pyramid networks for object detection. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, pp. 936–944, 2017. DOI: 10.1109/cvpr.2017.106.
    [26]
    Z. Ge, S. T. Liu, F. Wang, Z. M. Li, J. Sun. YOLOX: Exceeding YOLO series in 2021, [Online], Available: https://arxiv.org/abs/2107.08430, 2021.
    [27]
    Z. Ge, S. T. Liu, Z. M. Li, O. Yoshie, J. Sun. OTA: Optimal transport assignment for object detection. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Nashville, USA, pp. 303–312, 2021. DOI: 10.1109/CVPR46437.2021.00037.
    [28]
    H. Y. Peng, S. Q. Yu. A systematic IoU-related method: Beyond simplified regression for better localization. IEEE Transactions on Image Processing, vol. 30, pp. 5032–5044, 2021. DOI: 10.1109/TIP.2021.3077144.
    [29]
    K. Chen, J. Q. Wang, J. M. Pang, Y. H. Cao, Y. Xiong, X. X. Li, S. Y. Sun, W. S. Feng, Z. W. Liu, J. R. Xu, Z. Zhang, D. Z. Cheng, C. C. Zhu, T. H. Cheng, Q. J. Zhao, B. Y. Li, X. Lu, R. Zhu, Y. Wu, J. F. Dai, J. D. Wang, J. P. Shi, W. L. Ouyang, C. C. Loy, D. H. Lin. MMDetection: Open MMLab detection toolbox and benchmark, [Online], Available: https://arxiv.org/abs/1906.07155, 2019.
    [30]
    V. Bazarevsky, Y. Kartynnik, A. Vakunov, K. Raveendran, M. Grundmann. BlazeFace: Sub-millisecond neural face detection on mobile GPUs, [Online], Available: https://arxiv.org/abs/1907.05047, 2019.
    [31]
    S. F. Zhang, X. Y. Zhu, Z. Lei, H. L. Shi, X. B. Wang, S. Z. Li. FaceBoxes: A CPU real-time face detector with high accuracy. In Proceedings of IEEE International Joint Conference on Biometrics, Denver, USA, 2017. DOI: 10.1109/BTAS.2017.8272675.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    用微信扫码二维码

    分享至好友和朋友圈

    Article Metrics

    Article views (1803) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return