Citation: | Mingchao Li, Kun Huang, Xiao Ma, Yuexuan Wang, Wen Fan, Qiang Chen. Mask Distillation Network for Conjunctival Hyperemia Severity Classification. Machine Intelligence Research, vol. 20, no. 6, pp.909-922, 2023. https://doi.org/10.1007/s11633-022-1385-5 |
[1] |
P. J. Murphy, J. S. C. Lau, M. M. L. Sim, R. L. Woods. How red is a white eye? Clinical grading of normal conjunctival hyperaemia. Eye, vol. 21, no. 5, pp. 633–638, 2007. DOI: 10.1038/sj.eye.6702295.
|
[2] |
A. van der Woerdt. Management of intraocular inflammatory disease. Clinical Techniques in Small Animal Practice, vol. 16, no. 1, pp. 58–61, 2001. DOI: 10.1053/svms.2001.22807.
|
[3] |
M. Janssens. Efficacy of levocabastine in conjunctival provocation studies. Documenta Ophthalmologica, vol. 82, no. 4, pp. 341–351, 1992. DOI: 10.1007/BF00161022.
|
[4] |
F. Honrubia, J. García-Sánchez, V. Polo, J. M. M. de la Casa, J. Soto. Conjunctival hyperaemia with the use of latanoprost versus other prostaglandin analogues in patients with ocular hypertension or glaucoma: A meta-analysis of randomised clinical trials. British Journal of Ophthalmology, vol. 93, no. 3, pp. 316–321, 2009. DOI: 10.1136/bjo.2007.135111.
|
[5] |
D. S. Friedman, S. R. Hahn, L. Gelb, J. Tan, S. N. Shah, E. E. Kim, T. J. Zimmerman, H. A. Quigley. Doctor–patient communication, health-related beliefs, and adherence in glaucoma results from the glaucoma adherence and persistency study. Ophthalmology, vol. 15, no. 8, pp. 120–1327.e3, 2008. DOI: 10.1016/j.ophtha.2007.11.023.
|
[6] |
T. Akagi, Y. Okamoto, T. Kameda, K. Suda, H. Nakanishi, M. Miyake, H. O. Ikeda, T. Yamada, S. Kadomoto, A. Uji, A. Tsujikawa. Short-term effects of different types of anti-glaucoma eyedrop on the sclero-conjunctival vasculature assessed using anterior segment OCTA in normal human eyes: A pilot study. Journal of Clinical Medicine, vol. 9, no. 2, Article number 4016, 2020. DOI: 10.3390/jcm9124016.
|
[7] |
E. Terao, S. Nakakura, Y. Fujisawa, Y. Nagata, K. Ueda, Y. Kobayashi, S. Oogi, S. Dote, M. Shiraishi, H. Tabuchi, T. Yoneda, A. Fukushima, R. Asaoka, Y. Kiuchi. Time course of conjunctival hyperemia induced by omidenepag isopropyl ophthalmic solution 0.002%: A pilot, comparative study versus ripasudil 0.4%. BMJ Open Ophthalmology, vol. 5, no. 1, Article number e000538, 2020. DOI: 10.1136/bmjophth-2020-000538.
|
[8] |
C. W. McMonnies, A. Chapman-Davies. Assessment of conjunctival hyperemia in contact lens wearers. Part I. American Academy of Optometry, vol. 64, no. 4, pp. 246–250, 1987. DOI: 10.1097/00006324-198704000-00003.
|
[9] |
R. L. Terry, C. M. Schnider, B. A. Holden, R. Cornish, T. Grant, D. Sweeney, D. L. Hood, A. Back. CCLRU standards for success of daily and extended wear contact lenses. Optometry and Vision Science, vol. 70, no. 3, pp. 234–243, 1993. DOI: 10.1097/00006324-199303000-00011.
|
[10] |
N. Efron. Grading scales for contact lens complications. Ophthalmic and Physiological Optics, vol. 18, no. 2, pp. 182–186, 1998. DOI: 10.1016/S0275-5408(97)00066-5.
|
[11] |
M. M. Schulze, D. A. Jones, T. L. Simpson. The development of validated bulbar redness grading scales. Optometry and Vision Science, vol. 84, no. 10, pp. 976–983, 2007. DOI: 10.1097/OPX.0b013e318157ac9e.
|
[12] |
W. C. Stewart, A. E. Kolker, J. A. Stewart, J. Leech, A. L. Jackson. Conjunctival hyperemia in healthy subjects after short-term dosing with latanoprost, bimatoprost, and travoprost. Americian Journal of Ophthalmology, vol. 135, no. 3, pp. 314–320, 2003. DOI: 10.1016/S0002-9394(02)01980-3.
|
[13] |
M. R. H. M. Adnan, A. M. Zain, H. Haron, R. Alwee, M. Z. C. Azemin, A. O. Ibrahim. Eye redness image processing techniques. Journal of Physics:Conference Series, vol. 892, Article number 012019, 2017. DOI: 10.1088/1742-6596/892/1/012019.
|
[14] |
M. M. Schulze, N. Hutchings, T. L. Simpson. Grading bulbar redness using cross-calibrated clinical grading scales. Investigative Ophthalmology &Visual Science, vol. 52, no. 8, pp. 5812–5817, 2011. DOI: 10.1167/iovs.10-7006.
|
[15] |
T. Yoneda, T. Sumi, A. Takahashi, Y. Hoshikawa, M. Kobayashi, A. Fukushima. Automated hyperemia analysis software: Reliability and reproducibility in healthy subjects. Japanese Journal of Ophthalmology, vol. 56, no. 1, pp. 1–7, 2012. DOI: 10.1007/s10384-011-0107-2.
|
[16] |
T. Sumi, T. Yoneda, K. Fukuda, Y. Hoshikawa, M. Kobayashi, M. Yanagi, Y. Kiuchi, K. Yasumitsu-Lovell, A. Fukushima. Development of automated conjunctival hyperemia analysis software. Cornea, vol. 32, no. 1, pp. S52–S59, 2013. DOI: 10.1097/ICO.0b013e3182a18e44.
|
[17] |
B. Huntjens, M. Basi, M. Nagra. Evaluating a new objective grading software for conjunctival hyperaemia. Contact Lens and Anterior Eye, vol. 43, no. 2, pp. 137–143, 2020. DOI: 10.1016/j.clae.2019.07.003.
|
[18] |
H. Masumoto, H. Tabuchi, T. Yoneda, S. Nakakura, H. Ohsugi, T. Sumi, A. Fukushima. Severity classification of conjunctival hyperaemia by deep neural network ensembles. Journal of Ophthalmology, vol. 2019, Article number 7820971, 2019. DOI: 10.1155/2019/7820971.
|
[19] |
X. Q. Zhang, Y. Hu, Z. J. Xiao, J. S. Fang, R. Higashita, J. Liu. Machine learning for cataract classification/grading on ophthalmic imaging modalities: A survey. Machine Intelligence Research, vol. 19, no. 3, pp. 184–208, 2022. DOI: 10.1007/s11633-022-1329-0.
|
[20] |
G. Hinton, O. Binyals, J. Dean. Distilling the knowledge in a neural network. Computer Science, vol. 14, no. 7, pp. 38–39, 2015.
|
[21] |
S. Zagoruyko, N. Komodakis. Paying more attention to attention: Improving the performance of convolutional neural networks via attention transfer. In Proceedings of the 5th International Conference on Learning Representations, Toulon, France, 2017.
|
[22] |
J. Yim, D. Joo, J. Bae, J. Kim. A gift from knowledge distillation: Fast optimization, network minimization and transfer learning. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, pp. 7130–7138, 2017. DOI: 10.1109/CVPR.2017.754.
|
[23] |
Z. H. Huang, N. Y. Wang. Like what you like: Knowledge distill via neuron selectivity transfer, [Online], Available: https://arxiv.org/abs/1707.01219, 2017.
|
[24] |
S. H. Lin, H. W. Xie, B. Wang, K. C. Yu, X. J. Chang, X. D. Liang, G. Wang. Knowledge distillation via the target-aware transformer. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, New Orleans, USA, pp. 10905–10914, 2022. DOI: 10.1109/CVPR52688.2022.01064.
|
[25] |
J. P. Gou, B. S. Yu, S. J. Maybank, D. C. Tao. Knowledge distillation: A survey. International Journal of Computer Vision, vol. 129, no. 6, pp. 1789–1819, 2021. DOI: 10.1007/s11263-021-01453-z.
|
[26] |
H. Guo, K. Zheng, X. C. Fan, H. K. Yu, S. Wang. Visual attention consistency under image transforms for multi-label image classification. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Long Beach, USA, pp. 729–739, 2019. DOI: 10.1109/CVPR.2019.00082.
|
[27] |
B. L. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba. Learning deep features for discriminative localization. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 2921–2929, 2016. DOI: 10.1109/CVPR.2016.319.
|
[28] |
R. Ghosh, K. Ghosh, S. Maitra. Automatic detection and classification of diabetic retinopathy stages using CNN. In Proceedings of the 4th International Conference on Signal Processing and Integrated Networks, IEEE, Noida, India, pp. 550–554, 2017. DOI: 10.1109/SPIN.2017.8050011.
|
[29] |
A. S. Krishnan, D. C. R, V. Bhat, P. B. Ramteke, S. G. Koolagudi. A transfer learning approach for diabetic retinopathy classification using deep convolutional neural networks. In Proceedings of the 15th IEEE India Council International Conference, Coimbatore, India, pp. 1–6, 2018. DOI: 10.1109/INDICON45594.2018.8987131.
|
[30] |
R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra. Grad-CAM: Visual explanations from deep networks via gradient-based localization. International Journal of Computer Vision, vol. 128, no. 2, pp. 336–359, 2020. DOI: 10.1007/s11263-019-01228-7.
|
[31] |
K. Simonyan, A. Zisserman. Very deep convolutional networks for large-scale image recognition. In Proceedings of the 3rd International Conference on Learning Representations, San Diego, USA, 2015.
|
[32] |
K. M. He, X. Y. Zhang, S. Q. Ren, J. Sun. Deep residual learning for image recognition. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 770–778, 2015. DOI: 10.1109/CVPR.2016.90.
|
[33] |
G. Huang, Z. Liu, L. van der Maaten, K. Q. Weinberger. Densely connected convolutional networks. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, pp. 2261–2269, 2017. DOI: 10.1109/CVPR.2017.243.
|
[34] |
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna. Rethinking the inception architecture for computer vision. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 2818–2826, 2016. DOI: 10.1109/CVPR.2016.308.
|
[35] |
F. Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, pp. 1800–1807, 2017. DOI: 10.1109/CVPR.2017.195.
|
[36] |
M. Sandler, A. Howard, M. L. Zhu, A. Zhmoginov, L. C. Chen. MobileNetV2: Inverted residuals and linear bottlenecks. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Salt Lake City, USA, pp. 4510–4520, 2018. DOI: 10.1109/CVPR.2018.00474.
|
[37] |
J. Hu, L. Shen, G. Sun. “Squeeze-and-Excitation networks. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Salt Lake City, USA, pp. 7132–7141, 2018. DOI: 10.1109/CVPR.2018.00745.
|
[38] |
F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, K. Keutzer. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5 MB model size, [Online], Available: https://arxiv.org/abs/1602.07360, 2016.
|
[39] |
M. X. Tan, B. Chen, R. M. Pang, V. Vasudevan, M. Sandler, A. Howard, Q. V. Le. MnasNet: Platform-aware neural architecture search for mobile. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Long Beach, USA, pp. 2815–2823, 2019. DOI: 10.1109/CVPR.2019.00293.
|