Citation: | Mengya Han, Yibing Zhan, Baosheng Yu, Yong Luo, Han Hu, Bo Du, Yonggang Wen, Dacheng Tao. Region-adaptive Concept Aggregation for Few-shot Visual Recognition. Machine Intelligence Research, vol. 20, no. 4, pp.554-568, 2023. https://doi.org/10.1007/s11633-022-1358-8 |
[1] |
K. M. He, X. Y. Zhang, S. Q. Ren, J. Sun. Deep residual learning for image recognition. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 770–778, 2016. DOI: 10.1109/CVPR.2016.90.
|
[2] |
J. Redmon, S. Divvala, R. Girshick, A. Farhadi. You only look once: Unified, real-time object detection. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, pp. 779–788, 2016. DOI: 10.1109/CVPR.2016.91.
|
[3] |
S. Q. Ren, K. M. He, R. Girshick, J. Sun. Faster R-CNN: Towards real-time object detection with region proposal networks. In Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, Canada, pp. 91–99, 2015.
|
[4] |
B. B. Jia, M. L. Zhang. Multi-dimensional classification via selective feature augmentation. Machine Intelligence Research, vol. 19, no. 1, pp. 38–51, 2022. DOI: 10.1007/s11633-022-1316-5.
|
[5] |
F. T. Wang, L. Yang, J. Tang, S. B. Chen, X. Wang. DLA+: A light aggregation network for object classification and detection. International Journal of Automation and Computing, vol. 18, no. 6, pp. 963–972, 2021. DOI: 10.1007/s11633-021-1287-y.
|
[6] |
J. Xie, S. Y. Liu, J. X. Chen. A framework for distributed semi-supervised learning using single-layer feedforward networks. Machine Intelligence Research, vol. 19, no. 1, pp. 63–74, 2022. DOI: 10.1007/s11633-022-1315-6.
|
[7] |
L. Fei-Fei, R. Fergus, P. Perona. One-shot learning of object categories. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 4, pp. 594–611, 2006. DOI: 10.1109/TPAMI.2006.79.
|
[8] |
B. M. Lake, R. Salakhutdinov, J. B. Tenenbaum. Human-level concept learning through probabilistic program induction. Science, vol. 350, no. 6266, pp. 1332–1338, 2015. DOI: 10.1126/science.aab3050.
|
[9] |
A. X. Li, K. X. Zhang, L. W. Wang. Correction to: Zero-shot fine-grained classification by deep feature learning with semantics. International Journal of Automation and Computing, vol. 18, no. 6, pp. 1045–1045, 2021. DOI: 10.1007/s11633-020-1224-5.
|
[10] |
C. Yang, C. Liu, X. C. Yin. Weakly correlated knowledge integration for few-shot image classification. Machine Intelligence Research, vol. 19, no. 1, pp. 24–37, 2022. DOI: 10.1007/s11633-022-1320-9.
|
[11] |
S. Gidaris, N. Komodakis. Dynamic few-shot visual learning without forgetting. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Salt Lake City, USA, pp. 4367–4375, 2018. DOI: 10.1109/CVPR.2018.00459.
|
[12] |
Z. Z. Zhang, C. L. Lan, W. J. Zeng, Z. B. Chen, S. F. Chang. Uncertainty-aware few-shot image classification. [Online], Available: https://arxiv.org/abs/2010.04525, 2020.
|
[13] |
O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, D. Wierstra. Matching networks for one shot learning. In Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Spain, pp. 3637–3645, 2016.
|
[14] |
W. Y. Chen, Y. C. Liu, Z. Kira, Y. C. F. Wang, J. B. Huang. A closer look at few-shot classification. In Proceedings of International Conference on Learning Representations, New Orleans, USA, 2019.
|
[15] |
C. Finn, P. Abbeel, S. Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, pp. 1126–1135, 2017.
|
[16] |
S. Ravi, H. Larochelle. Optimization as a model for few-shot learning. In Proceedings of International Conference on Learning Representations, Toulon, France, 2017.
|
[17] |
J. Snell, K. Swersky, R. Zemel. Prototypical networks for few-shot learning. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, pp. 4080–4090, 2017.
|
[18] |
F. Sung, Y. X. Yang, L. Zhang, T. Xiang, P. H. S. Torr, T. M. Hospedales. Learning to compare: Relation network for few-shot learning. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Salt Lake City, USA, pp. 1199–1208, 2018. DOI: 10.1109/CVPR.2018.00131.
|
[19] |
Y. L. Tian, Y. Wang, D. Krishnan, J. B. Tenenbaum, P. Isola. Rethinking few-shot image classification: A good embedding is all you need? In Proceedings of the 16th European Conference on Computer Vision, Springer, Glasgow, UK, pp. 266–282, 2020. DOI: 10.1007/978-3-030-58568-6_16.
|
[20] |
Q. X. Luo, L. F. Wang, J. G. Lv, S. M. Xiang, C. H. Pan. Few-shot learning via feature hallucination with variational inference. In Proceedings of IEEE Winter Conference on Applications of Computer Vision, Waikoloa, USA, pp. 3962–3971, 2021. DOI: 10.1109/WACV48630.021.00401.
|
[21] |
K. Lee, S. Maji, A. Ravichandran, S. Soatto. Meta-learning with differentiable convex optimization. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Long Beach, USA, pp. 10649–10657, 2019. DOI: 10.1109/CVPR.2019.01091.
|
[22] |
Y. B. Chen, Z. Liu, H. J. Xu, T. Darrell, X. L. Wang. Meta-Baseline: Exploring simple meta-learning for few-shot learning. In Proceedings of IEEE/CVF International Conference on Computer Vision, IEEE, Montreal, Canada, pp. 9042–9051, 2021. DOI: 10.1109/ICCV48922.2021.00893.
|
[23] |
M. Y. Ren, E. Triantafillou, S. Ravi, J. Snell, K. Swersky, J. B. Tenenbaum, H. Larochelle, R. S. Zemel. Meta-learning for semi-supervised few-shot classification. In Proceedings of the 31st Conference on Neural Information Processing Systems, Long Beach, USA, 2017.
|
[24] |
P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, P. Perona. Caltech-UCSD Birds 200, Computation & Neural Systems, Technical Report, 2010–001, California Institute of Technology, USA, 2010.
|
[25] |
Y. L. Guo, N. M. Cheung. Attentive weights generation for few shot learning via information maximization. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, USA, pp. 13496–13505, 2020. DOI: 10.1109/CVPR42600.2020.01351.
|
[26] |
B. Hariharan, R. Girshick. Low-shot visual recognition by shrinking and hallucinating features. In Proceedings of IEEE International Conference on Computer Vision, Venice, Italy, pp. 3037–3046, 2017. DOI: 10.1109/ICCV.2017.328.
|
[27] |
K. Li, Y. L. Zhang, K. P. Li, Y. Fu. Adversarial feature hallucination networks for few-shot learning. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, USA, pp. 13467–13476, 2020. DOI: 10.1109/CVPR42600.2020.01348.
|
[28] |
A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero, R. Hadsell. Meta-learning with latent embedding optimization. In Proceedings of the 7th International Conference on Learning Representations, New Orleans, USA, 2019.
|
[29] |
S. Baik, S. Hong, K. M. Lee. Learning to forget for meta-learning. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, USA, pp. 2376–2384, 2020. DOI: 10.1109/CVPR42600.2020.00245.
|
[30] |
J. He, R. C. Hong, X. L. Liu, M. L. Xu, Q. R. Sun. Revisiting local descriptor for improved few-shot classification. ACM Transactions on Multimedia Computing, Communications, and Applications, Article number 127, 2021
|
[31] |
B. N. Oreshkin, P. Rodriguez, A. Lacoste. TADAM: Task dependent adaptive metric for improved few-shot learning. In Proceedings of the 32nd Conference on Neural Information Processing Systems, Montreal, Canada, pp. 721–731, 2018.
|
[32] |
C. Simon, P. Koniusz, R. Nock, M. Harandi. Adaptive subspaces for few-shot learning. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, USA, pp. 4135–4144, 2020. DOI: 10.1109/CVPR42600.2020.00419.
|
[33] |
H. J. Ye, H. X. Hu, D. C. Zhan, F. Sha. Few-shot learning via embedding adaptation with set-to-set functions. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, USA, pp. 8805–8814, 2020. DOI: 10.1109/CVPR42600.2020.00883.
|
[34] |
C. Zhang, Y. J. Cai, G. S. Lin, C. H. Shen. DeepEMD: Few-shot image classification with differentiable earth mover′s distance and structured classifiers. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, USA, pp. 12200–12210, 2020. DOI: 10.1109/CVPR42600.2020.01222" target="_blank">href="https://doi.org/10.1109/CVPR42600.2020.01222">10.1109/CVPR42600.2020.01222.
|
[35] |
R. B. Hou, H. Chang, B. P. Ma, S. G. Shan, X. L. Chen. Cross attention network for few-shot classification. In Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, Canada, pp. 4003–4014, 2019.
|
[36] |
H. Q. Qiu, H. L. Li, Q. B. Wu, F. M. Meng, L. F. Xu, K. N. Ngan, H. C. Shi. Hierarchical context features embedding for object detection. IEEE Transactions on Multimedia, vol. 22, no. 12, pp. 3039–3050, 2020. DOI: 10.1109/TMM.2020.2971175.
|
[37] |
D. F. Xu, Y. K. Zhu, C. B. Choy, L. Fei-Fei. Scene graph generation by iterative message passing. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, pp. 3097–3106, 2017. DOI: 10.1109/CVPR.2017.330.
|
[38] |
V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, D. Hassabis. Human-level control through deep reinforcement learning. Nature, vol. 518, no. 7540, pp. 529–533, 2015. DOI: 10.1038/nature14236.
|
[39] |
V. G. Satorras, J. B. Estrach. Few-shot learning with graph neural networks. In Proceedings of the 6th International Conference on Learning Representations, Vancouver, Canada, 2018.
|
[40] |
J. Kim, T. Kim, S. Kim, C. D. Yoo. Edge-labeling graph neural network for few-shot learning. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Long Beach, USA, pp. 11–20, 2019. DOI: 10.1109/CVPR.2019.00010.
|
[41] |
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, I. Polosukhin. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, pp. 6000–6010, 2017.
|
[42] |
F. Wang, M. Q. Jiang, C. Qian, S. Yang, C. Li, H. G. Zhang, X. G. Wang, X. O. Tang. Residual attention network for image classification. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, pp. 6450–458, 2017. DOI: 10.1109/CVPR.2017.683.
|
[43] |
J. Xu, R. Zhao, F. Zhu, H. M. Wang, W. L. Ouyang. Attention-aware compositional network for person re-identification. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Salt Lake City, USA, pp. 2119–2128, 2018. DOI: 10.1109/CVPR.2018.00226.
|
[44] |
J. Hu, L. Shen, G. Sun. Squeeze-and-excitation networks. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Salt Lake City, USA, pp. 7132–7141, 2018. DOI: 10.1109/CVPR.2018.00745.
|
[45] |
S. Woo, J. Park, J. Y. Lee, I. S. Kweon. CBAM: Convolutional block attention module. In Proceedings of the 15th European Conference on Computer Vision, Springer, Munich, Germany, pp. 3–19, 2018. DOI: 10.1007/978-3-030-01234-2_1.
|
[46] |
K. Han, A. Xiao, E. H. Wu, J. Y. Guo, C. J. Xu, Y. H. Wang. Transformer in transformer. [Online], Available: https://arxiv.org/abs/2103.00112, 2021.
|
[47] |
A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. H. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, N. Houlsby. An image is worth 16×16 words: Transformers for image recognition at scale. In Proceedings of the 9th International Conference on Learning Representations, 2021.
|
[48] |
P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio. Graph attention networks. In Proceedings of International Conference on Learning Representations, Vancouver, Canada, 2018.
|
[49] |
K. Fukushima, S. Miyake. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position. Pattern Recognition, vol. 15, no. 6, pp. 455–469, 1982. DOI: 10.1016/0031-3203(82)90024-3.
|
[50] |
M. Riesenhuber, T. Poggio. Hierarchical models of object recognition in cortex. Nature Neuroscience, vol. 2, no. 11, pp. 1019–1025, 1999. DOI: 10.1038/14819.
|
[51] |
R. Girdhar, D. Ramanan. Attentional pooling for action recognition. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, USA, pp. 33–44, 2017.
|
[52] |
J. Lee, I. Lee, J. Kang. Self-attention graph pooling. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, USA, pp. 3734–3743, 2019.
|
[53] |
I. Koo, M. Jeong, C. Kim. Improving few-shot learning with weakly-supervised object localization. [Online], Available: https://arxiv.org/abs/2105.11715, 2021.
|
[54] |
W. B. Li, L. Wang, J. L. Xu, J. Huo, Y. Gao, J. B. Luo. Revisiting local descriptor based image-to-class measure for few-shot learning. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Long Beach, USA, pp. 7253–7260, 2019. DOI: 10.1109/CVPR.2019.00743.
|
[55] |
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. H. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, L. Fei-Fei. ImageNet large scale visual recognition challenge. International Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015. DOI: 10.1007/s11263-015-0816-y.
|
[56] |
T. Elsken, B. Staffler, J. H. Metzen, F. Hutter. Meta-learning of neural architectures for few-shot learning. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Seattle, USA, pp. 12362–12372, 2020. DOI: 10.1109/CVPR42600.2020.01238.
|
[57] |
Z. Y. Chen, J. X. Ge, H. S. Zhan, S. T. Huang, D. L. Wang. Pareto self-supervised training for few-shot learning. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE, Nashville, USA, pp. 13658–13667, 2021. DOI: 10.1109/CVPR46437.2021.01345.
|