Lilia Zouari, Hafedh Abid and Mohamed Abid. Sliding Mode and PI Controllers for Uncertain Flexible Joint Manipulator. International Journal of Automation and Computing, vol. 12, no. 2, pp. 117-124, 2015. https://doi.org/10.1007/s11633-015-0878-x
Citation: Lilia Zouari, Hafedh Abid and Mohamed Abid. Sliding Mode and PI Controllers for Uncertain Flexible Joint Manipulator. International Journal of Automation and Computing, vol. 12, no. 2, pp. 117-124, 2015. https://doi.org/10.1007/s11633-015-0878-x

Sliding Mode and PI Controllers for Uncertain Flexible Joint Manipulator

doi: 10.1007/s11633-015-0878-x
  • Received Date: 2014-03-22
  • Rev Recd Date: 2014-09-25
  • Publish Date: 2015-04-01
  • This paper is dealing with the problem of tracking control for uncertain flexible joint manipulator robots driven by brushless direct current motor (BDCM). Flexibility of joint in the manipulator constitutes one of the most important sources of uncertainties. In order to achieve high performance, all parts of the manipulator including actuator have been modeled. To cancel the tracking error, a hysteresis current controller and speed controllers have been developed. To evaluate the effectiveness of speed controllers, a comparative study between proportional integral (PI) and sliding mode controllers has been performed. Finally, simulation results carried out in the Matlab simulink environment demonstrate the high precision of sliding mode controller compared with PI controller in the presence of uncertainties of joint flexibility.

     

  • loading
  • [1]
    A. Fayazi, H. N. Rafsanjani. Fractional order fuzzy sliding mode controller for robotic flexible joint manipulators. In Proceedings of the 9th IEEE International Conference on Control and Automation, IEEE, Santiago, Chile, pp. 1244-1249, 2011.
    [2]
    B. Siciliano. Control in robotics: Open problems and fu-ture directions. In Proceedings of IEEE International Con-ference on Control Applications, IEEE, Trieste, Italy, vol. 1, pp. 81-85, 1998.
    [3]
    M. H. Korayema, M. Taherifara, H. Tourajizadeh. Com-pensating the flexibility uncertainties of a cable suspended robot using SMC approach. Robotica, 2014. (Online first).
    [4]
    I. Hassanzadeh, H. Kharrati, J. R. Bonab. Model following adaptive control for a robot with flexible joints. In Proceed-ings of the Canadian Conference on Electrical and Com-puter Engineering, IEEE, Niagara Falls, Canada, pp. 1467-1472, 2008.
    [5]
    M. M. Fateh. Nonlinear control of electrical flexible-joint robots. Nonlinear Dynamics, vol. 67, no. 4, pp. 2549-2559, 2012.
    [6]
    M. M. Fateh. Robust control of flexible-joint robots using voltage control strategy. Nonlinear Dynamics, vol. 67, no. 2, pp. 1525-1537, 2012.
    [7]
    M. M. Zirkohi, M. M. Fateh, M. A. Shoorehdeli. Type-2 fuzzy control for a flexible-joint robot using voltage control strategy. International Journal of Automation and Comput-ing, vol. 10, no. 3, pp. 242-255, 2013.
    [8]
    H. Chaoui, W. Gueaieb, M. C. E. Yagoub, P. Sicard. Hybrid neural fuzzy sliding mode control of flexible-joint manipu-lators with unknown dynamics. In Proceedings of the 32nd IEEE Annual Conference on Industrial Electronics, IEEE, Paris, France, pp. 4082-4087, 2006.
    [9]
    M. T. Ho, Y. W. Tu. PID controller design for a flexible-link manipulator. In Proceedings of the 44th IEEE Conference on Decision and Control, and European Control Confer-ence, IEEE, Taiwan, China, pp. 6841-6846, 2005.
    [10]
    A. Khalilian, G. Sahamijoo, O. Avatefipour, F. Piltan, M. R. S. Nasrabad. Design high efficiency-minimum rule base PID like fuzzy computed torque controller. International Journal of Information Technology and Computer Science, vol. 6, no. 7, pp. 77-87, 2014.
    [11]
    A. C. Huang, Y. C. Chen. Adaptive sliding control for single-link flexible-joint robot with mismatched uncertain-ties. IEEE Transactions on Control Systems Technology, vol. 12, no. 5, pp. 770-775, 2004.
    [12]
    S. Ozgoli. Position Control for Flexible Joint Robots in Presence of Actuator Saturation, Ph. D. dissertation, Khaje Nasir Toosi University of Technology, Iran, 2005.
    [13]
    S. Ozgoli, H. D. Taghirad. A survey on the control of flexible joint robots. Asian Journal of Control, vol. 8, no. 4, pp. 332-344, 2006.
    [14]
    S. Ulrich, J. Z. Sasiadek, I. Barkana. Modeling and direct adaptive control of a flexible-joint manipulator. Journal of Guidance, Control, and Dynamics, vol. 35, no. 1, pp. 25-39, 2012.
    [15]
    L. Zouari, H. Abid, M. Abid. Comparative study between PI and sliding mode controllers for flexible joint manipula-tor driving by brushless DC motor. In Proceedings of the 14th IEEE International Conference on Sciences and Tech-niques of Automatic Control and Computer Engineering, IEEE, Sousse, Tunisia, pp. 294-299, 2013.
    [16]
    Y. C. Chang, H. M. Yen. Robust tracking control for a class of electrically driven flexible-joint robots without veloc-ity measurements. International Journal of Control, vol. 85, no. 2, pp. 194-212, 2012.
    [17]
    H. M. Yen, T. H. S. Li, Y. C. Chang. Adaptive neural net-work based tracking control for electrically driven flexible-joint robots without velocity measurements. Computers & Mathematics with Applications, vol. 64, no. 5, pp. 1022-1032, 2012.
    [18]
    F. L. Ni, Y. C. Liu, J. Dang. Fuzzy-sliding mode control for flexible-joint manipulator based on friction compensation. In Proceedings of IEEE International Conference on Mecha-tronics and Automation, IEEE, Chengdu, China, pp. 1868-1873, 2012.
    [19]
    L. Zouari, A. B. Rhouma, M. Abid. On the potentialities of reduced structure inverter integrated in robot application. In Proceedings of the World Congress on Engineering, London, UK, vol. 2, pp. 953-958, 2012.
    [20]
    W. Wu. Synthesis of a Fuzzy Controller by Genetic Algo-rithm: Application to Dynamic Adjustment of Parameters of a System, Ph. D. dissertation, Automation and Industrial Sciences and Technology of Lille, France, 1998.
    [21]
    J. J. E. Slotine, S. S. Sastry. Tracking control of non-linear systems using sliding surface with application to robot manipulators. International Journal of Control, vol. 38, no. 2, pp. 465-492, 1983.
    [22]
    M. B. R. Neila, D. Tarak. Adaptive terminal sliding mode control for rigid robotic manipulators. International Journal of Automation and Computing, vol. 8, no. 2, pp. 215-220, 2011.
    [23]
    K. Jamoussi, M. Ouali, L. Chrifi-Alaoui, H. Benderradji, A. E. Hajjaji. Robust sliding mode control using adaptive switching gain for induction motors. International Journal of Automation and Computing, vol. 10, no. 4, pp. 303-311, 2013.
    [24]
    N. M. B. Romdhane, T. Damak. Terminal sliding mode feedback linearization control. International Journal of Sci-ence and Techniques of Automatic Control and Computer Engineering, vol. 4, no. 1, pp. 1174-1187, 2010.
    [25]
    A. Attou, A. Massoum, E. Chiali. Sliding mode control of a permanent magnets synchronous machine. In Proceedings of the 4th International Conference on Power Engineering, Energy and Electrical Drives Power Engineering, IEEE, Is-tanbul, Turkey, pp. 115-119, 2013.
    [26]
    S. V. Zadeh, M. Zamanian. Permanent magnet DC motor sliding mode control system. International Journal of Engi-neering Transactions A: Basics, vol. 16, no. 4, pp. 367-376, 2003.
    [27]
    J. J. E. Slotine, W. P. Li. Applied Nonlinear Control, En-glewood Cliffs: Prentice Hall, 1991.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    用微信扫码二维码

    分享至好友和朋友圈

    Article Metrics

    Article views (6340) PDF downloads(4958) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return