Citation: | Shu Liang, Yi-Heng Wei, Jin-Wen Pan, Qing Gao and Yong Wang. Bounded Real Lemmas for Fractional Order Systems. International Journal of Automation and Computing, vol. 12, no. 2, pp. 192-198, 2015. https://doi.org/10.1007/s11633-014-0868-4 |
[1] |
T. Machado, I. S. Jesus, A. Galhano, J. B. Cunha. Frac-tional order electromagnetics. Signal Processing, vol. 86, no. 10, pp. 2637-2644, 2006.
|
[2] |
T. N. Laskin. Fractional quantum mechanics and Levy path integrals. Physics Letters, vol. 268, no. 4, pp. 298-305, 2000.
|
[3] |
I. Podlubny. Fractional Differential Equations, San Diego, USA: Academic Press, 1999.
|
[4] |
I. Podlubny. Fractional-order systems and PIλ Dμ con-trollers. IEEE Transactions on Automatic Control, vol. 44, no. 1, pp. 208-214, 1999.
|
[5] |
A. Oustaloup, X. Moreau, M. Nouillant. The CRONE suspension. Control Engineering Practice, vol. 4, no. 8, pp. 1101-1108, 1996.
|
[6] |
S. Arunsawatwong, Q. Nguyen. Design of retarded frac-tional delay differential systems using the method of in-equalities. International Journal of Automation and Com-puting, vol. 6, no. 1, pp. 22-28, 2009.
|
[7] |
C. M. Monje, Y. Q. Chen, B. M. Vinagre, D. Xue, V. Feliu. Fractional Order Systems and Controls: Fundamentals and Applications, London, England: Springer-Verlag, 2010.
|
[8] |
D. Matignon. Stability properties for generalized fractional differential systems. ESAIM: Proceedings, vol. 5, pp. 145-158, 1998.
|
[9] |
Y. Li, Y. Q. Chen, I. Podlubny. Mittag-Le²er stability of fractional order nonlinear dynamic systems. Automatica, vol. 45, no. 8, pp. 1965-1969, 2009.
|
[10] |
Z. Liao, C. Peng, W. Li, Y. Wang. Robust stability analysis for a class of fractional order systems with uncertain pa-rameters. Journal of the Franklin Institute, vol. 348, no. 6, pp. 1101-1113, 2011.
|
[11] |
J. Sabatier, M. Moze, C. Farges. LMI stability conditions for fractional order systems. Computers and Mathematics with Applications, vol. 59, no. 5, pp. 1594-1609, 2010.
|
[12] |
S. Liang, C. Peng, Y. Wang. Improved linear matrix in-equalities stability criteria for fractional order systems and robust stabilization synthesis: The 0 < α < 1 case. Control Theory and Applications, vol. 30, no. 4, pp. 531-535, 2013.
|
[13] |
Y. Wang, S. Liang. Two-DOF lifted LMI conditions for ro-bust D-stability of polynomial matrix polytopes. Interna-tional Journal of Control, Automation and Systems, vol. 11, no. 3, pp. 636-642, 2013.
|
[14] |
Y. H. Lan, W. J. Zhou, Y. P. Luo. Non-fragile observer de-sign for fractional-order one-sided Lipschitz nonlinear sys-tems. International Journal of Automation and Computing, vol. 10, no. 4, pp. 296-302, 2013.
|
[15] |
J. G. Lu, Y. Q. Chen. Robust stability and stabilization of fractional-order interval systems with the fractional order ff: The 0 < α < 1 case. IEEE Transactions on Automatic Control, vol. 55, no. 1, pp. 152-158, 2010.
|
[16] |
R. Malti, M. Aoun, F. Levron, A. Oustaloup. Analytical computation of the H2 norm of fractional commensurate transfer functions. Automatica, vol. 47, no. 11, pp. 2425-2432, 2011.
|
[17] |
L. Fadiga, C. Farges, J. Sabatier, M. Moze. On computation of H∞ norm for commensurate fractional order systems. In Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference, IEEE, Orlando, FL, USA, pp. 8231-8236, 2011.
|
[18] |
J. Sabatier, M. Moze, A. Oustaloup. On fractional systems H∞ norm computation. In Proceedings of the 44th IEEE Conference on Decision and Control and European Control Conference, IEEE, Seville, Spain, pp. 5758-5763, 2005.
|
[19] |
M. Moze, J. Sabatier, A. Oustaloup. On bounded real lemma for fractional systems. In Proceedings of the 17th IFAC World Congress, IFAC, COEX, Korea, pp. 15267-15272, 2008.
|
[20] |
S. Liang, C. Peng, Z. Liao, Y. Wang. State space ap-proximation for general fractional order dynamic systems. International Journal of Systems Science, vol. 45, no. 10, pp. 2203-2212, 2014.
|
[21] |
L. Fadiga, J. Sabatier, C. Farges. H∞ state feedback control of commensurate fractional order systems. In Proceedings of IFACWorkshop on Fractional Differentiation and Its Ap-plications, IFAC, Grenoble, France, vol. 6, pp. 54-59, 2013.
|
[22] |
J. Shen, J. Lam. State feedback H∞ control of commensu-rate fractional-order systems. International Journal of Sys-tems Science, vol. 45, no. 3, pp. 363-372, 2014.
|
[23] |
J. Shen, J. Lam. H∞ model reduction for positive frac-tional order systems. Asian Journal of Control, vol. 16, no. 2, pp. 441-450, 2014.
|
[24] |
L. Fadiga, C. Farges, J. Sabatier, K. Santugini. H∞ output feedback control of commensurate fractional order systems. In Proceedings of the European Control Conference, IEEE, Zurich, Switzerland, pp. 4538-4543, 2013.
|
[25] |
M. Green, D. J. N. Limebeer. Linear Robust Control, NJ, USA: Upper Saddle River, Prentice-Hall, Inc., 1995.
|
[26] |
T. Iwasaki, S. Hara. Generalized KYP lemma: Unified fre-quency domain inequalities with design applications. IEEE Transactions on Automatic Control, vol. 50, no. 1, pp. 41-59, 2005.
|