Esmat Sadat Alaviyan Shahri and Saeed Balochian. Analysis of Fractional-order Linear Systems with Saturation Using Lyapunov s Second Method and Convex Optimization. International Journal of Automation and Computing, vol. 12, no. 4, pp. 440-447, 2015.
Citation: Esmat Sadat Alaviyan Shahri and Saeed Balochian. Analysis of Fractional-order Linear Systems with Saturation Using Lyapunov s Second Method and Convex Optimization. International Journal of Automation and Computing, vol. 12, no. 4, pp. 440-447, 2015.

Analysis of Fractional-order Linear Systems with Saturation Using Lyapunov s Second Method and Convex Optimization

doi: 10.1007/s11633-014-0856-8
  • Received Date: 2013-09-05
  • Rev Recd Date: 2014-04-02
  • Publish Date: 2015-08-01
  • In this paper, local stability and performance analysis of fractional-order linear systems with saturating elements are shown, which lead to less conservative information and data on the region of stability and the disturbance rejection. Then, a standard performance analysis and global stability by using Lyapunov s second method are addressed, and the introduction of Lyapunov s function candidate whose sub-level set provide stability region and performance with a restricted state space origin is also addressed. The results include both single and multiple saturation elements and can be extended to fractional-order linear systems with any nonlinear elements and nonlinear noise that satisfy Lipschitz condition. A noticeable application of these techniques is analysis of control fractional-order linear systems with saturation control inputs.


  • loading
  • [1]
    Y. Li, Y. Q. Chen, I. Podlubny. Mittag-leffler stability of fractional order nonlinear dynamic system. Automatica, vol. 45, no. 8, pp. 1965-1969, 2009.
    J. C. Trigeassou, N. Maamri, J. Sabatier, A. Oustalou. A Lyapunov approach to the stability of fractional differential equations. Signal Processing, vol. 91, no. 3, pp. 437-445, 2011.
    J. J. Sabatier, M. Moze, C. Farges. LMI stability conditions for fractional order systems. Computers and Mathematics with Applications, vol. 59, no. 5, pp. 1594-1609, 2010.
    Y. Li, Y. Q. Chen, I. Podlubny. Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Computers and Mathematics with Applications, vol. 59, no. 5, pp. 1810-1821, 2010.
    Y. Q. Chen. Ubiquitous fractional order controls? In Proceedings of the Second IFAC Workshop on Fractional Derivatives and Applications, ISEP, Porto, Portugal, pp. 481-492, 2006.
    S. Y. Xing, J. G. Lu. Robust stability and stabilization of fractional-order linear systems with nonlinear uncertain parameters: An LMI approach. Chaos, Solitons and Fractals, vol. 42, no. 2, pp. 1163-1169, 2009.
    H. Delavari, D. Baleanu, J. Sadati. Stability analysis of caputo fractional-order nonlinear system revisited. Nonlinear Dynamics, vol. 67, no. 4, pp. 2433-2439, 2012.
    H. Delavari, R. Ghaderi, A. Ranjbar, N. S. Momani. Fractional order controller for two-degree of freedom polar robot. In Proceedings of International Workshop on New Trends in Science and Technology, Ankara, Turkey, 2008.
    C. Farges, J. Sabatier, M. Moze. Fractional order polytopic systems: Robust stability and stabilisation. Advances in Difference Equations, 2011. (Online first)
    S. Balochian, A. K. Sedigh, A. Zare. Stabilization of multiinput hybrid fractional order systems with state delay. ISA Transactions, vol. 50, no. 1, pp. 21-27, 2011.
    S. Balochian, A. K. Sedigh. Sufficient condition for stabilization of linear time invariant fractional order switched systems and variable structure control stabilizers. ISA Transactions, vol. 51, no. 1, pp. 65-73, 2012.
    M. Y. Ongun, D. Arslan, R. Garrappa. Nonstandard finite difference schemes for a fractional order Brusselator system. Advance in Difference Equations, 2013. (Online first)
    H. S. Ahn, Y. Q. Chen. Necessary and sufficient stability condition of fractional-order interval linear systems. Automatica, vol. 44, no. 11, pp. 2985-2988, 2008.
    I. Petras. Fractional-order Nonlinear Systems Modeling, Berlin and Heidelberg, Germany: Springer-Verlag, 2011.
    M. O. Efe. Fractional fuzzy adaptive sliding-mode control of a 2-DOF direct drive robot arm. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 38, no. 6, pp. 1561-1570, 2008.
    M. Pourgholi, V. J. Majd. A nonlinear adaptive resilient observer design for a class of lipschitz systems using LMI. Journal of Circuits, Systems, and Signal Processing, vol. 30, no. 6, pp. 1401-1415, 2011.
    E. Amini Boroujeni, H. R. Momeni. Observer based control of a class of nonlinear fractional order system using LMI. World Academy of Science, Engineering and Technology, vol. 61, pp. 779-782, 2012.
    Y. Chen, B. M. Vinagre, D. Xue, V. Feliu. Fractional-Order Systems and Controls Fundamentals and Applications, London, UK: Springer-Verlag, 2010.
    I. Petras, D. Bednarova. Control of fractional-order nonlinear system: A review. Acta Mechanica et Automatica, vol. 5, no. 2, pp. 96-100, 2011.
    D. Baleanu, Z. B. Guven, J. A. T. Machado. New Trends in Nanotechnology and Fractional Calculus Applications, Netherlands: Springer, 2010.
    M. D. Ortigueira. An introduction to the fractional continuous-time linear systems: The 21st century systems. IEEE Circuits and Systems Magazine, vol. 8, no. 3, pp. 19-26, 2008.
    J. Sabatier, O. P. Agrawal, J. A. T. Machado. Advances in Fractional Calculus, Theoretical Developments and Applications in Physics and Engineering, London, UK: Springer, 2007.
    B. Guo, D. Huang. Existence and stability of standing waves for nonlinear fractional Schrödinger equations. Journal of Mathematical Physics, vol. 53, no. 8, Article number 083702, 2012.
    N. Laskin. Fractional quantum mechanics. Physical Review E, vol. 62, pp. 3135-3145, 2000.
    R. Metzler, J. Klafter. The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. Journal of Physics A: Mathematical and General, vol. 37, no. 31, pp.R161-R208, 2004.
    S. Das. Functional Fractional Calculus, 2nd ed., Berlin Heidelberg, Germany: Springer-Verlag, pp. 1-220, 2011.
    L. Stamova, G. Stamov. Lipschitz stability criteria for functional differential systems of fractional. Journal of Mathematical Physics, vol. 54, no. 4, Article number 043502, 2013.
    R. Magin, M. D. Ortigueira, I. Podlubny, J. Trujillo. On the fractional signals and systems. Signal Processing, vol. 91, no. 3, pp. 350-371, 2011.
    F. Liu, M. M. Meerschaert, S. Momani, N. N. Leonenko, W. Chen, O. P. Agrawal. Fractional differential equations. International Journal of Differential Equations, vol. 2010, Article number 215856, 2010.
    L. G. Yuan, Q. G. Yang. Parameter identification and synchronization of fractional-order chaotic systems. Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 1, pp. 305-316, 2012.
    J. J. E. Slotin, W. A. Li. Applied Nonlinear Control, Englewood Cliffs, New Jersey, USA: Prentice Hall, 1991.
    H. Hindi, S. Boyd. Analysis of linear systems with saturation using convex optimization. In Proceedings of the 37th IEEE Conference on Decision and Control, IEEE, Florida, USA, pp. 903-908, 1998.
    L. Ghaoui, S. Niculescu. Advances in Linear Matrix Inequality Method in Control, Philadelphia, USA: Society for Industrial and Applied Mathematics, 2000.
    T. S. Hu, Z. L. Lin, B. M. Chen. An analysis and design method for linear system subject to actuator saturation and disturbance. Automatica, vol. 38, no. 2, pp. 351-359, 2002.c
  • 加载中


    通讯作者: 陈斌,
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索



    Article Metrics

    Article views (6056) PDF downloads(4520) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint