Synthesizing Scheduled Robust Model Predictive Control with Target Tracking
-
Graphical Abstract
-
Abstract
Systems with large operating regions and non-zero state target tracking have limited the industrial application of robust model predictive control (RMPC) with synthetic action. To overcome the problem, this paper presents a novel formulation of synthesizing scheduled RMPC for linear time varying (LTV) systems. Off-line, we compute the matrix that transforms target output into steady state first. Then a set of stabilizing state feedback laws which are corresponding to a set of estimated regions of stability covering the desired operating region are provided. On-line, these control laws are implemented as a single scheduled state feedback model predictive control (MPC) which switches between the set of local controllers and achieve the desired target at last. Finally, the algorithm is illustrated with an example.
-
-